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Abstract. On the basis of work done by Lorentz force and Maxwell’s equations, energy conversion relation-
ships of electromagnetic fields in the dispersive and absorptive media are analyzed. Then new definitions
of stored and lossy energy densities are proposed, respectively. Furthermore, it is predicted that light may
stop steadily in an active medium when both real part of impedance and imaginary part of wave vector
equal zero, which corresponds to a case that time-dependent Poynting vector shift forward and then turn
backward periodically.

1 Introduction

Slowing or even stopping light is one of the most interest-
ing issues to the modern physical sciences and correlated
technologies [1,2]. Recently, Heinze et al. have stopped
light for a whole minute by using a technique called elec-
tromagnetically induced transparency [1]. Tsakmakidis et
al. have proposed theoretically another way to stop light
by applying an axially varying hetero-structure with a
metamaterial core of negative refractive index [2]. These
researches may lead to applications in optical data pro-
cessing and storage or realization of optical memories.

Energy flow velocity is an essential parameter adopted
to describe propagation properties of light. In the disper-
sive and absorptive media, knowledge of stored electro-
magnetic energy densities is important to address issues
associated with energy flow velocity. Theoretical predic-
tion [3] and experimental verification [4] of existence of
left-handed material (LHM) invigorate researches in meta-
materials and provide opportunities to reconsider the ba-
sic concepts and theorems of electromagnetic waves in
lossy or gain media [5–11] (Gain may be taken as neg-
ative loss, below, we shall not distinguish difference be-
tween gain and loss unless otherwise indicated). Early,
theoretical evaluation of electromagnetic energy density
in a medium which is both electrically and magnetically
dispersive and absorptive has been attempted by Askne
and Lind [12]. However, their energy density expression is
inappropriate for LHM, since it yields negative energy val-
ues near the resonance frequency of either permittivity or
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permeability [5]. Adopting equations of motion of electric
and magnetic polarization, another type of definition of
stored and lossy energy densities has been proposed [6,7],
in which electric (magnetic) lossy energy density is di-
rectly taken as the term related to the damping one of
the equation of motion of electric (magnetic) polarization
without a rigorous classification criterion.

In this work, we shall offer a criterion to classify stored
and lossy energies in the dispersive and absorptive media,
and then investigate properties of energy flow velocity of
electromagnetic wave in lossy media. It is predicted that,
under certain conditions, electromagnetic wave may be
stopped steadily in an active medium. To the best of our
knowledge, this is a new possible approach to stop light.
The remainder of the paper is organized as follows: in
Section 2, a criterion to classify stored and lossy energies
in lossy media is deduced from Maxwell’s equations with
Lorentz force considered. Thus new definitions of stored
and lossy energy densities are proposed. In Section 3, the
properties of energy flow velocity are discussed by apply-
ing the new definitions of stored and lossy energy densities
Finally, some conclusions are drawn in Section 4.

2 Analysis on stored and lossy energies
in a lossy medium

Let us begin by considering energy conversion relation-
ships of electromagnetic fields in a dispersive and ab-
sorptive medium. For simplicity, we limit our attention
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to the homogeneous isotropic linear media. Choosing
time dependence eiωt, the medium can be generally
represented by a complex scalar relative permittivity
ε̃ = |ε̃| exp(−iαε) = ε′ − iε′′ and permeability μ̃ =
|μ̃| exp(−iαμ) = μ′ − iμ′′, respectively (In this paper, the
complex valued parameters are marked with “∼”). αε(μ)

is electric (magnetic) damping angle. For passive media,
both αε and αμ are in the range of [0, π], and for active
media, either αε or αμ may be in the range of (π, 2π) [10].
Assuming the space has volume V , charge density ρ and
closed surface area S, Lorentz force applied to the charges
in a small volume dV by electric field intensity

⇀

E and
magnetic flux density

⇀

B is given by [13]

⇀

fdV = ρdV
(

⇀

E + ⇀
v × ⇀

B
)

, (1)

where ⇀
v is velocity of the charges ρdV . The work WL

done by Lorentz force in time range from t0 to t may be
written as

WL =
∫

V

dV

∫ t

t0

dt′
⇀

f · ⇀
v =

∫

V

dV

∫ t

t0

dt′
⇀

J · ⇀

E, (2)

in which
⇀

J ≡ ρ
⇀
v is electric current density. Based on

Maxwell’s equations, equation (2) becomes

WL =
∫

V

dV

∫ t

t0

dt′
⇀

J · ⇀

E

= −
∮

S

dS

∫ t

t0

dt′
(

⇀

E × ⇀

H
)
· n̂

−
∫

V

dV

∫ t

t0

dt′
(

⇀

E · ∂
⇀

D

∂t′
+

⇀

H · ∂
⇀

B

∂t′

)
, (3)

where
⇀

H is magnetic field intensity,
⇀

D is electric flux den-
sity,

⇀

SPoynting ≡ ⇀

E×⇀

H is time-dependent Poynting vector
(TDPV), and n̂ is an outward unit vector normal to the

closed surface S. Both We(t) = − ∫
V

dV
∫ t

t0
dt′

⇀

E · ∂
⇀
D

∂t′ and

Wm(t) = − ∫
V

dV
∫ t

t0
dt′

⇀

H · ∂
⇀
B

∂t′ may be taken as parts of
work done by Lorentz force, respectively. According to re-
lationship between work and alteration of electromagnetic
energies, electric energy density ue(t) and magnetic en-

ergy density um(t) are usually defined as ∂ue(t)
∂t =

⇀

E · ∂
⇀
D

∂t

and ∂um(t)
∂t =

⇀

H · ∂
⇀
B

∂t , respectively. In a non-dispersive

and lossless medium, there are ∂
⇀
D

∂t · ⇀

E = ∂
⇀
E

∂t · ⇀

D and
∂

⇀
B

∂t · ⇀

H = ∂
⇀
H

∂t · ⇀

B, time-averaged electromagnetic energy
density 〈ue,m〉 ≡ 〈ue + um〉 is derived as [6,7]:

〈ue,m〉 =
1
4

(
εε0|E|2 + μμ0|H |2) . (4)

It is noted that the well-known Poynting’s theorem is
usually written in the form [7,13]

∫

V

dV
⇀

J · ⇀

E = −
∮

S

dS
(

⇀

E × ⇀

H
)
· n̂

−
∫

V

dV

(
⇀

E · ∂
⇀

D

∂t′
+

⇀

H · ∂
⇀

B

∂t′

)
. (5)

Comparing equation (3) with equation (5), it is stressed
that Poynting’s theorem focus on time-rate relationship
among work done by Lorentz force, power flowing through
the closed surface and changes of the electric and magnetic
energies. Since Lorentz force is not necessarily conserva-
tive, the value of WL may relate to the process of doing
work. To clearly and generally demonstrate energy con-
version relationships of electromagnetic fields in a lossy
medium, we shall carefully treat equation (3) instead of
equation (5).

For simplicity, we shall firstly pay our main atten-

tion on the terms of We(t) = − ∫
V dV

∫ t

t0
dt′

⇀

E · ∂
⇀
D

∂t′ and

Wm(t) = − ∫
V dV

∫ t

t0
dt′

⇀

H · ∂
⇀
B

∂t′ for a single-frequency har-
monic homogeneous plane wave (HHPW), which does not
loose generality since any types of electromagnetic wave
may be linearly composited by HHPWs. Choosing a fre-
quency of f = ω/2π, the electric field intensity and elec-
tric flux density of a HHPW in the medium having relative
permittivity ε̃ and permeability μ̃ can be, respectively, ex-
pressed as [13]:

⇀

E(⇀
r , t) =

⇀

E0e
−

⇀

k′′·(⇀
r −⇀

r 0) cos
[
ωt −

⇀

k′ · (⇀
r − ⇀

r 0)
]

, (6)

⇀

D(⇀
r , t) = |ε̃|ε0

⇀

E0e
−

⇀

k′′·(⇀
r−⇀

r 0) cos
[
ωt−

⇀

k′ · (⇀
r−⇀

r 0)−αε

]
,

(7)

where
⇀

E0 is electric field intensity of the wave at instant

t = 0 and position ⇀
r 0, and

⇀̃

k =
⇀

k′ − i
⇀

k′′ is complex val-
ued wave vector. Substituting equations (6) and (7) into

We(t) = − ∫
V

dV
∫ t

t0
dt′

⇀

E · ∂
⇀
D

∂t′ , we have

We(t) = −
∫

V

dV
1
4
|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)

×
{

cos
[
2ωt − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αε

]

− cos
[
2ωt0 − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αε

]}

−
∫

V

dV
1
2
ω|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sin αε(t − t0).

(8)
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Analogously, we can obtain

Wm(t) = −
∫

V

dV

∫ t

t0

dt′
(

⇀

H · ∂
⇀

B

∂t′

)

= −
∫

V

dV
1
4
|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)

×
{

cos
[
2ωt − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αμ

]

− cos
[
2ωt0 − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αμ

]}

−
∫

V

dV
1
2
ω|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sinαμ(t − t0).

(9)

Apparently, both We and Wm include a time-dependent
periodic term and a time-dependent linear one, respec-
tively. Physically, periodic variation of the work indicates
that energies are stored and then released by turns, i.e.,
the periodic terms relate to stored energies. Thus electric
and magnetic stored energy densities may be, respectively,
defined by

ue(t) =
1
4
|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)

×
{

cos
[
2ωt− 2

⇀

k′ · (⇀
r − ⇀

r 0) − αε

]

− cos
[
2ωt0 − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αε

]}

=
1
2
|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0),

×
{

cos2
[
ωt −

⇀

k′ · (⇀
r − ⇀

r 0) − αε/2
]

− cos2
[
ωt0 −

⇀

k′ · (⇀
r − ⇀

r 0) − αε/2
]}

(10)

um(t) =
1
4
|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)

×
{

cos
[
2ωt− 2

⇀

k′ · (⇀
r − ⇀

r 0) − αμ

]

− cos
[
2ωt0 − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αμ

]}

=
1
2
|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)

×
{

cos2
[
ωt −

⇀

k′ · (⇀
r − ⇀

r 0) − αμ/2
]

− cos2
[
ωt0 −

⇀

k′ · (⇀
r − ⇀

r 0) − αμ/2
]}

. (11)

Let cos2[ωt0 −
⇀

k′ · (⇀
r −⇀

r 0)−αε/2] = 0 and cos2[ωt0 −
⇀

k′ ·
(⇀
r −⇀

r 0)−αμ/2] = 0, time-averaged electric and magnetic
stored energy densities are, respectively, obtained as:

〈ue〉 =
1
4
|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0), (12)

〈um〉 =
1
4
|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0). (13)

Apparently, both 〈ue〉 and 〈um〉 are always positive. In
addition, it is noted from equations (10)–(13) that the
minium value of the stored energy ue(m)(t) does not nec-
essarily correspond to the case of both E = 0 and D = 0
(H = 0 and B = 0), which relates directly to non-
synchronous variation of E and D (H and B) of electro-
magnetic wave in the lossy medium [10,11]. On the other
hand, the time-dependent linear terms relate to lossy en-
ergies. The electric and magnetic lossy energy densities
may be, respectively, defined as:

ue,less(t) =
1
2
ω|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sin αε(t − t0), (14)

um,less(t) =
1
2
ω|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sin αμ(t − t0).

(15)

Since the lossy energies in a range of time may be easily
calculated by using time-rate of change of electric and
magnetic lossy energy densities, time-rate of change of
electric and magnetic lossy energy densities instead of
time-averaged electric and magnetic lossy energy densi-
ties are, respectively, given by:

∂ue,loss(t)
∂t

=
1
2
ω|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sin αε, (16)

∂um,loss(t)
∂t

=
1
2
ω|μ̃|μ0H

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sin αμ. (17)

It is pointed out that definitions of ue(t),um(t), ue,loss(t)
and um,loss(t), which are applicable for lossy media, are
usually derived by adopting the equations of motion of
electric and magnetic polarization [6,7]. The ue(m),loss(t)
is directly taken as the term related to the electric (mag-
netic) damping one of the motion equation of electric
(magnetic) polarization. In fact, definitions of lossy en-
ergy densities given in references [6,7], which are formed
as functions of time integrals, may be further divided into
a time-dependent periodic term and a time-dependent lin-
ear one after performing integral, respectively. Noting re-
lationship between ε̃(μ̃) and damping parameter Γe(Γm),
it is verified that time-dependent linear and periodic terms
obtained by the two ways are identical to each other,
respectively.

Adopting relation of Ẽ(⇀
r , t) = η̃H̃(⇀

r , t) (where η̃ =√
μ̃μ0
ε̃ε0

=
√

|μ̃|μ0
|ε̃|ε0

e−i
αμ−αε

2 is impedance), equation (9) may
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be rewritten as:

Wm(t) = −
∫

V

dV
1
4
|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)

×
{

cos
[
2ωt− 2

⇀

k′ · (⇀
r − ⇀

r 0) − αε

]

− cos
[
2ωt0 − 2

⇀

k′ · (⇀
r − ⇀

r 0) − αε

]}

−
∫

V

dV
1
2
ω|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) sin αμ(t − t0).

(18)

Equations (8) and (18) indicate that the periodic part
of We always alters synchronously with that of Wm, al-
though variation of electric and magnetic parameters of
electromagnetic wave in the lossy medium is usually non-
synchronous. Thus time-averaged electromagnetic stored
energy density 〈ue,m〉 and time-rate of change of electro-
magnetic lossy energy density ∂ue,m,loss(t)/∂t may be,
respectively, proposed as

〈ue,m〉 =
1
2
|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0), (19)

∂ue,m,loss(t)
∂t

=
1
2
ω|ε̃|ε0E

2
0e−2

⇀

k′′·(⇀
r −⇀

r 0)(sin αμ + sin αε).

(20)

When both αε and αμ equal zero, equation (19) reduces
to equation (4).

It is known that time-averaged Poynting vector
(TAPV) may be given by [13]:

〈⇀

SPonting〉 =
1

2|η̃|E
2
0e−2

⇀

k′′·(⇀
r −⇀

r 0) cos
(

αμ − αε

2

)
êS ,

(21)
where êS is a unit vector with its direction parallels to that
of 〈⇀

SPoynting〉. Under condition of
∫

V dV
∫ t

t0
dt′

⇀

J · ⇀

E = 0,
it is derived from equations (20) and (21), that

∮

S

dS〈⇀

SPoynting〉 · n̂ =
∫

V

dV
∂ue,m,loss(t)

∂t
. (22)

Equation (22) further confirms the rationality of the def-
initions of stored and lossy energy densities obtained in
this work.

In order to account for the dispersion, we consider the
signal spectrum consisted of two discrete different frequen-
cies f1 = ω1/2π and f2 = ω2/2π [14],

⇀

E(⇀
r , t) =

⇀

E01e
−

⇀

k′′
1 ·(⇀

r −⇀
r 0) cos

[
ω1t −

⇀

k′
1 · (⇀

r − ⇀
r 0)

]

+
⇀

E02e
−

⇀

k′′
2 ·(⇀

r −⇀
r 0) cos

[
ω2t −

⇀

k′
2 · (⇀

r − ⇀
r 0)

]
.

(23)

It has been verified that the cross terms of the Poynting
vector average to zero yielding [14]

〈⇀

SPonting,total〉 = 〈⇀

SPonting,1〉 + 〈⇀

SPonting,2〉. (24)

In addition, We(t) = − ∫
V

dV
∫ t

t0
dt′

⇀

E · ∂
⇀
D

∂t′ is given as:

We(t) = −
∫

V

dV
1
4
|ε̃1|ε0E

2
01e

−2
⇀

k′′
1 ·(⇀

r −⇀
r 0)

×
{

cos
[
2ω1t − 2

⇀

k′
1 · (⇀

r − ⇀
r 0) − αε1

]

− cos
[
2ω1t0 − 2

⇀

k′
1 · (⇀

r − ⇀
r 0) − αε1

]}

−
∫

V

dV
1
2
ω1|ε̃1|ε0E

2
01e

−2
⇀

k′′
1 ·(⇀

r −⇀
r 0) sin αε1(t−t0)

−
∫

V

dV
1
4
|ε̃2|ε0E

2
02e

−2
⇀

k′′
2 ·(⇀

r −⇀
r 0)

×
{

cos
[
2ω2t − 2

⇀

k′
2 · (⇀

r − ⇀
r 0) − αε2

]

− cos
[
2ω2t0 − 2

⇀

k′
2 · (⇀

r − ⇀
r 0) − αε2

]}

−
∫

V

dV
1
2
ω2|ε̃2|ε0E

2
02e

−2
⇀

k′′
2 ·(⇀

r −⇀
r 0) sin αε2(t−t0)

−
∫

V

dV
1
2
|ε̃2|ε0E01E02e

−(
⇀

k′′
1 +

⇀

k′′
2 )·(⇀

r −⇀
r 0)

ω2

ω1+ω2

×
{

cos
[
(ω1 + ω2)t − (

⇀

k′
1 +

⇀

k′
2) · (⇀

r − ⇀
r 0)−αε2

]

− cos
[
(ω1+ω2)t0 − (

⇀

k′
1+

⇀

k′
2) · (⇀

r − ⇀
r 0) − αε2

]}

−
∫

V

dV
1
2
|ε̃2|ε0E01E02e

−(
⇀

k′′
1 +

⇀

k′′
2 )·(⇀

r −⇀
r 0)

ω2

ω2−ω1

×
{

cos
[
(ω2 − ω1)t − (

⇀

k′
2 −

⇀

k′
1) · (⇀

r − ⇀
r 0)−αε2

]

− cos
[
(ω2 − ω1)t0 − (

⇀

k′
2 −

⇀

k′
1) · (⇀

r−⇀
r 0)−αε2

]}

−
∫

V

dV
1
2
|ε̃1|ε0E01E02e

−(
⇀

k′′
1 +

⇀

k′′
2 )·(⇀

r −⇀
r 0)

ω1

ω1+ω2

×
{

cos
[
(ω1 + ω2)t − (

⇀

k′
1 +

⇀

k′
2) · (⇀

r − ⇀
r 0)−αε1

]

− cos
[
(ω1 + ω2)t0−(

⇀

k′
1+

⇀

k′
2) · (⇀

r − ⇀
r 0) − αε1

]}

−
∫

V

dV
1
2
|ε̃1|ε0E01E02e

−(
⇀

k′′
1 +

⇀

k′′
2 )·(⇀

r −⇀
r 0)

ω1

ω1−ω2

×
{

cos
[
(ω1 − ω2)t − (

⇀

k′
1 −

⇀

k′
2) · (⇀

r − ⇀
r 0)−αε1

]

− cos
[
(ω1 − ω2)t0 − (

⇀

k′
1−

⇀

k′
2) · (⇀

r−⇀
r 0) − αε1

]}
.

(25)
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Apparently, the former four terms of equation (25)
correspond to stored and lossy energy densities of
ue,1(t), ue,lossy,1(t), ue,2(t) and ue,lossy,2(t) for the two in-
dependent electromagnetic waves, respectively, all of the
later four cross terms of equation (25) are time-dependent
periodic functions and not involved in the lossy ener-
gies. Analogously, we can verify that Wm(t) has similar
properties. Combining equations (3), (8), (22) and (24),
it is concluded that the cross terms presented in equa-
tion (25) may be neglected when we address issues associ-
ated with TAPV and the corresponding stored and lossy
energies.

3 On energy flow velocity

We shall pay some attention on energy flow velocity, which

is usually defined as ⇀
vE = 〈⇀

S P oynting〉
〈ue,m〉 [6]. Noting equa-

tions (19) and (21), we have

vE =
cos

(
αμ−αε

2

)
√|μ̃ε̃|μ0ε0

. (26)

Equation (26) offers a simple form of energy flow ve-
locity and differs to the energy flow velocity formula

of vE = (−1)s 2cRe(
√

ε̃/μ̃)

(ε′+2ωε′′/Γe)+(μ′+2ωμ′′/Γm)|ε̃/μ̃| marked as
equation (22) in reference [6], where index s is equal to
+1 for a right-handed medium and to −1 for a left-handed
one, and c is light velocity in free space. The significant
difference between two energy flow velocity formulas in-
dicate that proper definitions of stored electromagnetic
energy densities are important to study issues associated
with energy flow velocity.

We shall focus on a special case: cos(αμ−αε

2 ) = 0. For
passive medium, cos(αμ−αε

2 ) = 0 means that αε(μ) = 0
and αμ(ε) = π, thus cos(αμ+αε

2 ) = 0, i.e., Re(k̃) = 0 but
Im(k̃) �= 0, propagation of electromagnetic wave in this
medium is forbidden [13]. However, for active medium,
conditions of cos(αμ−αε

2 ) = 0 and sin(αμ+αε

2 ) = 0 (i.e.,
Re(k̃) �= 0 but Im(k̃) = 0) may be satisfied as αε(μ) = π

2

and αμ(ε) = 3π
2 . It is found from equations (12), (13) and

(19) that, here, 〈ue〉, 〈um〉 and 〈ue,m〉 do not necessarily
equal zero. In addition, ∂ue,m,loss(t)/∂t = 0 due to that
of αε(μ) = π

2 and αμ(ε) = 3π
2 , which means balance be-

tween electric loss (gain) and magnetic gain (loss). On the
other hand, in this case, direction of TDPV alter with
change of time, i.e., time-dependent energy flow shift for-
ward and then turn backward periodically, which leads
to that 〈⇀

SPonting〉 = 0 and light local in a space range
of λ

4 (λ is wavelength of light in this medium) along the
propagation direction, i.e., light seem to stop steadily.

Furthermore, we shall simply investigate cases asso-
ciated with changes of the sign of cos(αμ−αε

2 ). Accord-
ing to equation (21), propagation direction of TAPV

may alter with change of the sign of cos(αμ−αε

2 ). Thus
propagation direction of TAPV in an active medium
may be controlled by adjusting either permittivity or
permeability.

Finally, we shall suggest a possible experiment to ver-
ify our theoretical predictions by adopting microwave in-
stead of light. Recently, active microwave negative-index
metamaterial transmission line with gain has been real-
ized [9]. The unit cell of adopted general metamaterial
composite right-handed or left-handed transmission line
(CRLH TL) includes a series inductance (LR) and re-
sistance (R), a shunt capacitance (CR) and conductance
(G), a series capacitance (CL) and a shunt inductance
(LL), the tunnel diode device connected in series is used
to implement the active CRLH TL. The effective permit-
tivity and permeability of the CRLH TL may be given
as [8,9]:

ε̃eff =
[(

CR − 1
ω2LL

)
+ i

G

ω

]
/p, (27)

μ̃eff =
[(

LR − 1
ω2CL

)
+ i

R

ω

]
/p, (28)

where R is negative because of incorporation of the tunnel
diode and p is the equivalent section length approximated
by the unit cell. Apparently, when appropriate values of
LR, CR, CL, LL and ω are chosen, both CR − 1

ω2LL
= 0

and LR − 1
ω2CL

= 0 may be obtained simultaneously, i.e.,
conditions of cos(αμ−αε

2 ) = 0 and sin(αμ+αε

2 ) = 0 are sat-
isfied, microwave may stop steadily in this transmission
line. In addition, it is clear that sign of cos(αμ−αε

2 ), and
then direction of TAPV, may be altered by adjusting val-
ues of LR, CR, CL or LL, respectively.

4 Conclusions

In summary, on the basis of work done by Lorentz force
and Maxwell’s equations, new definitions of electromag-
netic stored and lossy energy densities are proposed, re-
spectively. Then properties of energy flow velocity in lossy
media are investigated. Interestingly, it is predicted that,
in an active medium, light may stop steadily and TAPV
direction of light is controllable. To the best of our knowl-
edge, this is an alternative procedure proposed to stop
light. These results may open the way to a multitude of
hybrid, optoelectronic devices to be used in “quantum in-
formation” processing, communication network and signal
processors. Confirmations about the expected properties
should motivate further theoretical progress.
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