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Abstract. Formation processes of true muonium (μ+μ−) atoms are investigated theoretically 1) for
negative-muon (μ−) collisions with a muonium (Mu = μ+e−) atom (i.e., μ− + μ+e− → μ+μ− + e−)
and 2) for positive-muon (μ+) collisions with a muonic hydrogen (pμ−) atom (i.e., μ+ +pμ− → μ+μ− +p).
The calculations are carried out by using two different types of approaches: one, applied to the μ− + e−μ+

system where electron emission plays an important role, is a semiclassical (SC) method, in which the ra-
dial distance between the negative and positive muons is treated as a classical variable, and the remaining
degrees of freedom are described by quantum mechanics. The other is a classical-trajectory Monte Carlo
(CTMC) method, in which all the degrees of freedom are described by classical mechanics. The formation
and ionization (or dissociation) cross sections and the state distributions of produced true-muonium atoms
are presented.

1 Introduction

Atomic bound states of a muon-antimuon pair μ+μ− are
called true muonium (or also known as di-muonium) [1–3].
Since a muon is 207 times heavier than an electron, the
hydrogenic μ+μ− atom has a deep ground (1s) state en-
ergy of −1.41 keV, and a very small Bohr radius of mere
512 fm. Due to this compactness, although the μ+μ−
atom has not yet been observed experimentally, its spec-
troscopic study is expected to play an important role in
a QED test [1–5]. A muonic hydrogen pμ− atom is also
an interesting compact system, and recently experiments
of measuring the Lamb shift and 2s hyperfine splitting
of pμ− have become feasible [6,7]. However, in compar-
ing between theory and experiment, one must consider a
hadronic effect especially due to a finite proton size [6–9].
In this respect, the μ+μ− atom is a purely leptonic sys-
tem, and is ideally suited for the QED test. The pos-
sibility of producing μ+μ− atoms (via virtual photons
on nuclei, positron-electron annihilation, etc.) in high-
energy collider experiments has been discussed in sev-
eral papers [3,10–13]. Unfortunately, it does not seem very
likely that the μ+μ− atoms manufactured by high-energy
colliders will be directly tractable for further performing
high-precession spectroscopic measurements.

Recently, a source of muonium (Mu = μ+e−) atoms
with a high vacuum yield becomes available in low
temperature conditions [14,15]. Furthermore, many efforts
have been made to obtain low-energy μ− beams [16–18].
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Under these circumstances, as part of the Ultra Slow
Muon project at J-PARC MUSE [19], it has been sug-
gested that the μ+μ− atoms may be efficiently produced
by using atomic collision processes of a negative muon and
a Mu atom, i.e.,

μ− + μ+e− → μ+μ− + e−. (1)

In planning such experiments, detailed information on the
reaction (1) becomes important needless to say, though it
cannot be obtained sufficiently at the present time [20].
In the sense that the system is composed of an electron
and two heavy particles with opposite charges, the reac-
tion (1) is closely analogous to pp̄ formation in p̄+ H (or
pμ− formation in μ− + H), for which detailed theoretical
studies have been already progressed [21–23].

Although no experimental plan has been arranged so
far to use muon exchange in atomic collisions of a positive
muon and a muonic hydrogen atom, i.e.,

μ+ + pμ− → μ+μ− + p, (2)

this reaction may be also expected to be an efficient
means of producing the μ+μ− atoms. As described be-
fore, the pμ− atom is really utilized for testing QED [6,7].
Low-energy μ+ beams are available by inducing the ion-
ization of the Mu atoms with lasers [15,24]. If the pμ−
atom is in the ground state (i.e., the principal quan-
tum number n = 1), the reaction (2) is highly endoergic
(−1.12 keV), and is of absolutely no use for producing
the μ+μ− atoms. On the other hand, if n ≥ 2, the re-
action (2) becomes exoergic (≥0.774 keV), and can take
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place even at low collision energies. The pμ− atoms are
produced after stopping and capture of negative muons
in hydrogen media. It is noteworthy that highly-excited
states (n � 15) of the pμ− atoms are primarily produced
in elementary collision processes such as μ− + H [22,23].
The density of matter for stopping muons is usually so
high that the highly-excited states rapidly cascade down
to lower ones [25–27]. In the absence of collisions with sur-
roundings, however the highly-excited states could remain
unchanged for a long time. Furthermore, the availability of
sufficiently long-lived pμ− atoms in the 2s state has been
experimentally established [28]. Thus, it is quite conceiv-
able that the excited states of pμ− atoms will be available
as a target in the reaction (2).

The present paper makes a theoretical study of the
two types of the μ+μ−-formation processes (1) and (2)
by means of reasonably reliable methods. The ionization
(→ μ+ +μ− + e−) and dissociation (→ μ+ +μ− + p) pro-
cesses are also investigated. Electron emission dominates
the reaction dynamics in μ− +μ+e−, and accordingly the
calculation for this system is carried out by using a semi-
classical (SC) method, in which the radial distance be-
tween μ+ and μ− is treated as a classical variable, and
the other degrees of freedom are described by quantum
mechanics. The SC method was applied to p̄ + H and
μ− +H [21,23], which are allied to the present μ− +μ+e−
system. The reliability of the SC method was demon-
strated for p̄ + H and μ− + H by comparing the results
with accurate quantum mechanical (QM) results [21,23]
(for other theoretical methods, see Ref. [22]). One may
expect that the SC method is appropriate also for the in-
vestigation of the reaction (1). Although the accurate QM
method could be applied to the reaction (1), its calcula-
tion encounters double-continuum difficulties at energies
above the ionization threshold. On the other hand, the
SC method can be employed at energies both below and
above the ionization threshold. For the μ+ + pμ− system,
a classical-trajectory Monte Carlo (CTMC) method is in-
troduced. The application of the CTMC method to the
Coulomb three-body collision problem was examined in
references [29–31]. The reaction (2) is similar to positron-
ium (e+e−) formation in e++H or e−+H̄. QM calculations
have been carried out for this system [32]. However, since
muons are much heavier than electrons, the application
of the QM treatment to the reaction (2) would not be so
easy. CTMC calculations were carried out for the e− + H̄
system [33,34], and the results agree well with experimen-
tal results of the e+ + H system [35]. Since muons can be
regarded as a heavy particle, the CTMC method is ex-
pected to work much better for the μ+ + pμ− system. In
the present paper, an additional CTMC calculation is car-
ried out also for μ− + μ+e−, though an electron is not a
heavy particle.

2 Semiclassical method

The SC method is applied to the μ+μ− formation and the
ionization in μ− + μ+e− collisions. The time-dependent

Schrödinger equation in the SC method is given by [21,23]

i
∂

∂t
ΨJM (R̂, r, t) = H̃ΨJM (R̂, r, t), (3)

where (J,M) are the total angular momentum quantum
numbers of the μ− + μ+e− system, R = (R, R̂) is the
position vector of μ− from μ+, and r = (r, r̂) is that
of e− from μ+. Here and in the following, atomic units
are used unless otherwise stated. The Hamiltonian H̃
in equation (3) is:

H̃ =
L̃2

2mRR2
+

p̃2

2mr
+ V, (4)

where L̃ is the μ+μ− angular momentum operator, p̃ is
the electronic momentum operator,mR andmr are the re-
duced masses of μ−+μ+ and e−+μ+, respectively, and V
is the interaction. The total wave function ΨJM (R̂, r, t)
can be written as [21,23]

ΨJM (R̂, r, t) =
1
r

∑

λ

(
2J + 1

4π

)1/2

DJ
−M−λ(R̂)ψJλ(r, t),

(5)
where DJ

Mλ(R̂) is the Wigner rotation matrix element.
The parameter R is taken, as was done in previous
SC studies [21,23], to represent the classical radial mo-
tion governed by the Born-Oppenheimer potential of the
μ− + μ+e− system [36]. In the μ− + μ+e− collisions,
the μ+e− atom is assumed to be initially in the 1s state.

The hydrogenic μ+μ− state is identified by (N,L),
which are the principal and angular momentum quantum
numbers. The distribution of the kinetic energy ε and an-
gular momentum l of emitted electrons for a specified L
can be given by [23]

dP J
Ll

dε
=

1
mr

Im
[
(AJ

Ll)
∗ dA

J
Ll

dr

]

r=r0

, (6)

where r0 is taken to be sufficiently large, and

AJ
Ll(r, ε) =

1√
2π

∑

λ

UJl
Lλ

∫
eiεt

〈
Ylλ

∣∣ψJλ(t)
〉

r
dt, (7)

with the spherical harmonics Ylλ(r̂) and

UJl
Lλ =

(
2L+ 1
2J + 1

)1/2

(L0lλ|Jλ). (8)

In the present study, the probability of the μ− capture to
form μ+μ− in the (N,L) state is defined by:

P J
NL =

∑

l

∫ ε2

ε1

dP J
Ll

dε
dε = mR

∑

l

∫ N+1/2

N−1/2

dP J
Ll

dε

dN

N3
, (9)

where ε1,2 are the electron energies corresponding to
N = N ± 1

2 through the conservation of energy [23]

Etot = ε− mR

2N2
= E − mr

2
, (10)
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with E being the center-of-mass (CM) collision energy of
μ− + μ+e−. The cross section for the formation of the
(N,L) state is given by:

σSC
μ+μ−(N,L) =

π

2mRE

∑

J

(2J + 1)P J
NL. (11)

The (N,L)-state distribution is defined as:

F SC(N,L) = σSC
μ+μ−(N,L)

/
σSC

μ+μ− , (12)

where
σSC

μ+μ− =
∑

NL

σSC
μ+μ−(N,L) (13)

is the total formation cross section. If the electron energy
is 0 < ε < Etot, this case corresponds to the (break-up)
ionization. Then, the ionization cross section becomes

σSC
ion =

π

2mRE

∑

JLl

(2J + 1)
∫ Etot

0

dP J
Ll

dε
dε. (14)

For the numerical calculation of ψJλ(r, t) in equation (5),
a grid-representation technique based on zero-points of
orthogonal polynomials was employed. The details were
given in reference [23]. The Chebyshev polynomials with
530 zero-points were adopted for the range of 0 ≤ r ≤
80a0, and the complete absorbing potential was applied
to avoid the reflection from the outer boundary. The
Legendre or Gegenbauer polynomials with 3 zero-points
were adopted for the polar angle of r. The channels of
|λ| ≤ 1 were coupled. For reference, these parameters pro-
vide the Mu(1s) energy −13.37 eV (the accurate value
is −13.54 eV) and the adiabatic polarizability 4.717 in
atomic units (the accurate value is 4.5). The maximum
total angular momenta considered in the collision calcu-
lations are, e.g., Jmax = 9 for E = 1 eV, Jmax = 22 for
E = 10 eV, Jmax = 50 for E = 50 eV, Jmax = 71 for
E = 100 eV, etc.

3 Classical-trajectory Monte Carlo method

For the system A + BC = μ+ + pμ− or μ− + e−μ+, the
CTMC method is employed to investigate the μ+μ− for-
mation. Let (Q,q) denote the Jacobi coordinates associ-
ated with the A + BC arrangement: Q being the position
vector of A from BC and q being that of C from B. The
classical equations of motion are

dQ
dt

=
P
mQ

,
dP
dt

= − ∂U

∂Q
, (15)

dq
dt

=
p
mq

,
dp
dt

= −∂U
∂q

, (16)

where mQ and mq are the corresponding reduced masses,
and U is the interaction. A set of equations (15) and (16)
were solved by a Runge-Kutta method. The numerical
details of the CTMC calculation were described in ref-
erence [37]. The initial energy of the hydrogenic BC

atom having the principal quantum number n is given
by −mq/(2n2). In reference [37], the initial angular mo-
mentum of the target was given as a fixed value. In the
present study, no special value is specified for the initial
angular momentum j of BC, and a uniform distribution is
assumed for j2 [38], which has the range

0 ≤ j2 ≤ j2max = n2. (17)

The cross sections for μ+μ− formation and dissociation
(or ionization) are calculated from

σCTMC
μ+μ− = πb2max

Iμ+μ−

I
, (18)

σCTMC
dis(ion) = πb2max

Idis(ion)

I
, (19)

where bmax is the largest value of the impact param-
eter b considered in the calculation, I is the total
number of trajectories calculated, and Iμ+μ−/dis/ion is
the number of events satisfying a criteria for forma-
tion/dissociation/ionization. It was confirmed that no
reaction took place for b ≥ bmax. The state of the
isolated μ+μ− atoms in the trajectory calculation is iden-
tified by the classical angular momentum L and the
classical energy

Eμ+μ− =
mR

2

(
dR
dt

)2

− 1
R
. (20)

The associated quantum numbers (N,L) that are integer
may be given by the relations [39]

[
(N − 1)

(
N − 1

2

)
N

]1/3

≤N <

[
N

(
N +

1
2

)
(N + 1)

]1/3

,

(21)

L <
N

N
L ≤ L+ 1, (22)

where

N =
(

mR

2|Eμ+μ− |
)1/2

. (23)

Then, the (N,L)-state distribution is calculated by:

FCTMC(N,L) =
Iμ+μ−(N,L)

Iμ+μ−
, (24)

where Iμ+μ−(N,L) is the number of trajectories resulting
in the formation of the (N,L) state.

The CTMC calculations with I = 5000−15 000 were
carried out. The values of bmax were chosen as bmax =
3.0a0−6.64a0 for μ−+μ+e−(n = 1), bmax = 0.09a0−0.2a0

for μ+ + pμ−(n = 2), bmax = 0.5a0 − 1.0a0 for μ+ +
pμ−(n = 5), bmax = 2.5a0 − 3.5a0 for μ+ + pμ−(n = 10),
bmax = 4.0a0 − 10.0a0 for μ+ + pμ−(n = 15), and
bmax = 6.0a0 − 15.0a0 for μ+ + pμ−(n = 20). To en-
sure the numerical reliability, the CTMC calculations were
tested for pμ− formation in μ− + H and for pp̄ formation
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in p̄ + H with a somewhat smaller number of trajecto-
ries (I = 1000). The deviations in the cross section from
the previous CTMC calculation of Cohen (μ− + H) [30]
are 2.5% at E = 10.9 eV and 0.48% at E = 16.3 eV, and
those from the CTMC calculation of Schultz (p̄+ H) [31]
are 3.5% at E = 8.16 eV and 1.8% at E = 13.6 eV. These
deviations are within the statistical errors.

4 Results

4.1 µ− + µ+e− collisions

In this section, the results are presented for the μ−+μ+e−
collision system. Using the SC method, the reaction cross
sections and the μ+μ−-state distributions were calculated
at collision energies E = 1−100 eV. Throughout this pa-
per, the collision energy E is represented in the CM frame.
The CTMC method was also applied to this system, and
the comparison was made between the two methods.

The μ+μ−-formation and ionization cross sections in
the low-, intermediate-, and high-energy regions are plot-
ted as a function of the CM energy E together in Figure 1.
Since the μ+μ− formation is exoergic, its cross section in-
creases with decreasing E even at low energies. The ion-
ization channel becomes open only at energies above the
threshold E = mr/2. For all the reaction channels, the
CTMC cross sections are overall much larger than the SC
ones. The same holds true with regard to the μ− + H
and p̄+ H systems [21,40]. As was expected, the classical
treatment of the electron would be deficient. However, if
one aims at observing only the qualitative behavior of the
cross sections, it can be said that the CTMC method is
acceptable.

As seen in the middle part of Figure 1, the formation
and ionization channels are competitive, and their cross
sections change places rapidly within a narrow range (ΔE)
of energies above the ionization threshold E = mr/2. The
energy range ΔE is equal to the highest energy ε = ε0
that can be carried away by the emitted electrons [23]. The
present SC and CTMC calculations offerΔE ∼ 15 eV. For
comparison, the middle part of Figure 1 also includes the
CTMC cross sections calculated by Cohen for pμ− forma-
tion in μ− +H [30]. The CTMC cross section of μ− +H is
smaller than the present CTMC result of μ−+Mu, and the
energy range ΔE seems to be slightly smaller for μ− + H.
Another previous CTMC study [41] shows that the energy
range for pp̄ formation in p̄ + H is ΔE ∼ 5 eV, which is
much smaller than that of μ− + H. The reduced-mass ra-
tio of p̄+ H, μ− + H and μ− + Mu is about 9 : 2 : 1. For
the system of a negatively-charged particle and a hydro-
gen isotope, it may be expected that the formation can
take place at higher energies above the ionization thresh-
old (i.e., ΔE becomes larger) if the reduced mass of the
collision system is getting smaller. Since the ionization en-
ergy practically vanishes at small distances (R) in these
systems [22,36,42], the effective transition energy in the
electron emission may be just equal to the electron ki-
netic energy ε. Then, the so-called Massey criterion [43]
suggests that the emitted electrons mostly have ε ∼ 1/τ ,
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Fig. 1. Cross sections for μ+μ− formation and ionization in
μ− + μ+e− collisions, calculated by the SC and CTMC meth-
ods. CTMC cross sections for pμ− formation in μ− + H ob-
tained by Cohen [30] are also plotted in the middle figure. The
collision energy E is represented in the CM frame.

with τ being the collision time. Since this relation implies
that ε0 ∝ 1/τ , one can obtain (for the same collision en-
ergy E) ΔE � ε0 ∝ (reducedmass)1/2, which seems to be
in accord with the present finding.

The μ+μ− formation in μ− + Mu offers a remark-
able resemblance to associative electron detachment in the
H− + H system [44], i.e.,

H− + H → H2 + e−. (25)
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Also for this reaction, a rapid decrease in the cross section
was observed at collision energies just above the detach-
ment threshold [44]. In this case, the break-up detach-
ment (→ H + H + e−) competes with the reaction (25).
An isotope effect was investigated by comparing the cross
sections between the H− + H and D− + D systems [45]:
Although no notable isotope effect was found, the en-
ergy range corresponding to the present ΔE seemed to
be slightly (but non-negligibly) smaller for D− + D than
for H− + H. The origin of the only slight difference may
be the same as that for the μ− +Mu and μ− +H systems:
The reduced-mass ratio between the isotope systems is ∼ 2
for the both cases of the associative detachment (D− + D
and H− + H) and the present type of formation reaction
(μ− + H and μ− + Mu).

Figure 2 shows the state distributions F (N,L) calcu-
lated by the SC method at CM collision energies E =
5, 10, and 15 eV. The distribution is visualized as a bright-
ness scale image. At first glance, an image feature changes
drastically with E. Generally, the distribution is shifted
to higher quantum numbers with increasing E. The pro-
duced states can have very high N up to ∞, but are lim-
ited to somewhat low L. Interestingly, the image feature
at E = 10 eV is very similar to that of the QM calculation
for μ−+H at E = 10 eV [46] except for the related range of
quantum numbers: Since the reduced mass of pμ− is about
twice as large as that of μ+μ−, it is natural that different
values of quantum numbers are involved in μ− + Mu and
μ− + H.

Figure 3 shows the state distributions defined by:

F (N) =
∑

L

F (N,L), F (L) =
∑

N

F (N,L), (26)

and compares the results between the SC and CTMC
methods. The CTMC method is in good agreement with
the SC method for the L distribution F (L), and offers
a much narrower distribution for F (N). In Figure 4, the
average quantum numbers defined by:

N̄ =
∑

N

N F (N), L̄ =
∑

L

LF (L) (27)

are plotted as a function of E. For both L̄ and N̄ , good
agreement can be obtained between the two methods. As
was sometimes assumed in previous studies, one might
expect that the most probable state of produced μ+μ−
were estimated by the condition of energy matching, i.e.,
N ∼ √

mR/mr � 10. Figure 4 shows that this is the
case only at very-low collision energies. The average quan-
tum number N̄ actually has significant E dependence, and
becomes very large at high E. Instead, it is empirically
true that the average quantum number L̄ takes a value
of ∼√

mR/mr at high collision energies. Thus, the simple
evaluation formula

√
mR/mr should be used as the most

probable value of N only if E is very low and otherwise
as that of L.
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Fig. 2. (N, L)-state distributions F (N, L) in μ− + μ+e− col-
lisions at the CM collision energies E = 5, 10, and 15 eV,
calculated by the SC method.

4.2 µ+ + pµ− collisions

For the μ+ + pμ−(n) collision system, the CTMC method
was used to investigate the μ+μ− formation and disso-
ciation processes. The calculations were carried out for
several initial states n between 2 and 20. Related energies
at which the reaction processes prominently take place
differ depending on the initial state n. A rough indica-
tion of such energies is given by the dissociation energy of
pμ−(n), i.e., Dn = mq/(2n2) = 2.53 × 103/n2 eV.
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Figure 5 shows the reaction cross sections as a function
of the CM collision energy E for the initial states n = 2, 5,
and 15. With increasing n, the cross sections become large,
and the related energies become low. Since the formation
reaction is exoergic for n ≥ 2, its cross section increases
with decreasing E. The energy dependence is overall sim-
ilar for all the cases of n ≥ 2, though a notable shoulder
structure appears at E ∼ Dn for n = 2. In contrast to the
μ− + μ+e− system, it turns out that the formation can
occur even at high energies much above the dissociation
threshold (i.e., E 
 Dn).

Figure 6 shows the N -state distribution F (N) for
the initial states n = 2, 5, and 15. It is seen that the
μ+μ− states with higher N can be produced as E in-
creases. However, the position N = N0 of the distri-
bution peak remains mostly unchanged with E. In the
μ+ + pμ− system, the condition of energy matching offers
N ∼ n

√
mQ/mq = 0.746n, which is always close to N0

regardless of the values of n and E. This result is quite
different from that of the μ− + μ+e− system.
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Fig. 5. Cross sections for μ+μ− formation and dissociation in
μ+ + pμ−(n) with n = 2, 5, and 15, calculated by the CTMC
method. The collision energy E is represented in the CM frame.

The similarity in the E dependence observed in Fig-
ure 5 suggests that the cross sections for different n might
be scaled to each other. For hydrogenic atoms, the av-
erage radius and the binding energy both have a scale
factor n2. In Figure 7, accordingly the scaled cross sec-
tions σμ+μ−/n4 and σdis/n

4 are plotted as a function
of the scaled energy n2E for various initial states of
n = 2−20. It seems that the plotted data are mostly ap-
proximated by a single smooth curve, except for the data
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Fig. 6. N-state distributions F (N) in μ+ + pμ−(n) with n =
2, 5, and 15, calculated by the CTMC method.

of the n = 2 formation cross sections just below n2E ∼
n2Dn = 2.53 × 103 eV. Analogous n-scaling laws can
be established for the cross sections of collision processes
involving highly-excited Rydberg atoms [47–51]. By us-
ing the scaling law found in the present study, the re-
action cross sections of the μ+ + pμ− collisions can be
easily estimated for any initial state n ≥ 2 and any en-
ergy E. For reference, the scaled formation cross section
y = σμ+μ−/n4 in units of 10−20 cm2 can be roughly evalu-
ated by a simple exponential fitting y = A exp(−Bx) with
x = n2E in units of eV, where the coefficients are given
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Fig. 7. Scaled formation cross sections σµ+µ−/n4 and scaled

dissociation cross sections σdis/n4 plotted as a function of n2E
in μ+ + pμ−(n) with n = 2, 5, 10, 15, and 20, calculated by the
CTMC method. The collision energy E is represented in the
CM frame.

by A = 1.09, B = 1.79 × 10−4 if 200 ≤ x < 4000, and
A = 1.90, B = 2.92 × 10−4 if x ≥ 4000.

5 Summary and discussion

The present paper has investigated the reaction processes
of true-muonium μ+μ− formation in different two types
of atomic collisions: 1) between a negative muon μ− and a
muonium atom μ+e− and 2) between a positive muon μ+

and a muonic hydrogen atom pμ−. The theoretical calcu-
lations have been carried out with use of the SC method
for describing the dynamics dominated by electron emis-
sion in the μ− +μ+e− system, and with use of the CTMC
method for describing the muon exchange dynamics in the
μ+ + pμ− system.

It has been found that the μ+μ− formation cannot take
place in the μ− + μ+e− system unless E < 30 eV. Hence,
when one tries to produce the μ+μ− atoms in collision ex-
periments of μ−+μ+e−, it is absolutely necessary that μ−
beams available in experiments [16–18] contain a sufficient
amount of <30 eV energy components (in the CM frame).
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In contrast to the μ− + μ+e− system, the μ+μ− for-
mation has been found to be able to take place at much
higher energies in the μ+ + pμ− system. This finding may
be an encouraging result for experimentalists. The essen-
tial requirement for the practical use of the μ+ + pμ−
collisions is that the pμ− atoms in excited (n ≥ 2) states
can be extracted and become available as a target. The
experimental evidence of the existence of long-lived pμ−
atoms in the 2s state [28] may be a favorable outlook for
manufacturing the μ+μ− atoms. It has been established
conveniently for the μ+ + pμ− system that the formation
cross section satisfies a useful scaling law with respect to
the principal quantum number n of pμ−.

The μ+μ− principal quantum number determined by
the condition of energy matching may be assumed to be
the most probable state produced in the μ+μ− formation.
This is always true in the μ+ + pμ− system, and is not so
except at very-low energies in the μ− + μ+e− system. In
the latter case, much higher states are produced with in-
creasing energy. In the experiments of the μ+μ− formation
using μ− + μ+e−, unless the related collision energies are
much below the ionization threshold, care may be needed
because the μ+μ− atoms in very-high states can be eas-
ily destroyed by further collisions with surroundings. Such
collisional effects were disadvantageous also in producing
antiprotonic helium (He+p̄) atoms [52,53].

Finally, let us examine the effect of a finite lifetime
(∼2 μs) of the muon in detecting μ+μ− atoms. The ex-
perimental production of μ+μ− atoms should be accom-
plished within this lifetime. The formation rate of μ+μ−
in the reaction (1) is given by:

dNμ+μ−

dt
= vσμ+μ−nμ−NMu, (28)

where Nμ+μ− is the number of μ+μ−, v is the collision
velocity, nμ− is the number density of μ−, and NMu is
the number of Mu. Its inverse is a time required for
producing one μ+μ− atom, and hence should be shorter
than the muon lifetime. The typical current experimen-
tal condition of J-PARK MUSE is [19]: vnμ− ∼ 0.64 ×
107 cm−2 s−1 and NMu ∼ 0.3×106. Inserting these values
and σμ+μ−∼10−16 cm2 obtained in this study offers

(
dNμ+μ−

dt

)−1

∼ 5 × 103 s, (29)

which is much longer than the muon lifetime. Unfortu-
nately, the current experimental condition is not yet suffi-
cient to detect μ+μ− atoms. Further efforts are expected
to be made for realizing the experimental plan to use
the reaction (1) [18,19]. It is not certain whether the
μ+μ− atoms produced in the reaction (2) can be exper-
imentally detected. In this respect, a recent experimen-
tal study [54,55] is very encouraging: the rate constants
for the chemical reaction process involving muonic he-
lium (He+μ−) atoms, i.e., He+μ− + H2 → He+μ−H + H,
have been measured, and namely the muonic atom is ac-
tually available to investigate its collision process within
the muon lifetime. This study shows promising advances
also for the μ+μ− detection via the reaction (2).
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