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Received 18 April 2014 and Received in final form 28 June 2014
Published online: 9 March 2015 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2015

Abstract. Granular solid hydrodynamics (GSH) is a continuum-mechanical theory for granular media,
whose wide range of applicability is shown in this paper. Simple, frequently analytic solutions are related
to classic observations at different shear rates, including: i) static stress distribution, clogging; ii) elasto-
plastic motion: loading and unloading, approach to the critical state, angle of stability and repose; iii)
rapid dense flow: the μ-rheology, Bagnold scaling and the stress minimum; iv) elastic waves, compaction,
wide and narrow shear band. Less conventional experiments have also been considered: shear jamming,
creep flow, visco-elastic behavior and non-local fluidization. With all these phenomena ordered, related,
explained and accounted for, though frequently qualitatively, we believe that GSH may be taken as a
unifying framework, providing the appropriate macroscopic vocabulary and mindset that help one coming
to terms with the breadth of granular physics.

1 Introduction

Being a subject of practical importance, elasto-plastic de-
formation of dense granular media has been under the
focus of engineering research for many decades if not cen-
turies [1–6]. The state of geotechnical theories, however,
is confusing, at least for physicists: Innumerable contin-
uum mechanical models compete, employing strikingly
different expressions. In a recent book on soil mechanics,
phrases such as morass of equations and jungle of data
were employed as metaphors [6]. Moreover, this competi-
tion is among theories applicable only to the slow shear
rates of elasto-plastic deformation, while rapid dense flow
(such as heap flow or avalanches) is taken to obey yet
rather different equations [7]. All this renders a unified
theory capable of accounting for granular phenomena at
different rates seemingly illusory.

This is the reason we adopted a different approach,
focusing on the physics and leaving the rich and subtle
granular phenomenology aside while constructing the the-
ory. Our hope was to arrive at a set of equations that is
firmly based in physics, broadly applicable, and affords a
well founded, correlated understanding of granular media.

The formalism we employ is called the hydrodynamic
theory (which physicists take to be the long-wavelength,
continuum-mechanical theory of condensed systems, in
contrast to its more widespread usage, as a synonym for
the Navier-Stokes’ equations). The hydrodynamic formal-
ism was pioneered by Landau [8] and Khalatnikov [9]
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in the context of superfluid helium, and introduced to
complex fluids by de Gennes [10]. Its two crucial points
are: The input in physics that specifies the complete set
of state variables, and the simultaneous consideration of
energy and momentum conservation. As a result, there
are many more constraints, and far less liberty, than the
usual approach of constitutive relations. Moreover, being
derived from physics rather than a subset of experimen-
tal data, if the theory renders some phenomena correctly,
chances are that the rest is also adequately accounted for1.

Hydrodynamic theories [12, 13] have been derived for
many condensed systems, including liquid crystals [14–20],
superfluid 3He [21–26], superconductors [27–29], macro-
scopic electro-magnetism [30–33], ferrofluids [34–43], and
polymers [44–47]. We contend that a hydrodynamic theory
is also useful and possible for granular media: Useful, be-
cause it should help to illuminate and order their complex
behavior; possible, because a significant portion is already
accomplished. We call it “granular solid hydrodynamics”,
abbreviated as GSH.

The structure of GSH is, as far as we can see, adequate
and complete. Starting from two basic notions, two-stage
irreversibility and variable transient elasticity, we have set
up the theory in [48–51]. In this paper, we focus on apply-
ing these equations to varying circumstances and a large
collection of experiments. In fact, no other continuum-
mechanical theory comes even close. (GSH is summarized

1 We note there are also constitutive approaches which start
successfully from physics, more specifically from micromechan-
ical properties of granular ensembles [11].



Page 2 of 27 Eur. Phys. J. E (2015) 38: 15

in sect. 2. It is not a derivation, only meant to keep this
paper self-contained.)

There are two aspects of GSH that we need to com-
municate: the ideology of its approach and the number of
experiments it accounts for. Some of our starting points,
such as energy conservation or the validity of thermody-
namics, are not generally accepted in the granular com-
munity. We have detailed our reasons why we believe our
postulates are appropriate in [48–51], and shall not repeat
them here. One of our hopes for the present paper is that
the second aspect of GSH, impressive and easily accessible,
is also quietly convincing —or at least thought-provoking,
for those who still have doubts about the basic approach
of GSH.

2 A brief presentation of GSH

As any hydrodynamic theory, GSH has two parts, struc-
ture and parameters. The first is derived from general
principles, but the second —values and functional depen-
dence of the energy and transport coefficients— are in-
puts, obtained either from a microscopic theory (a tall or-
der in any dense systems), or in a trial-and-error iteration,
in which the ramifications of postulated dependences are
compared to experiments and simulations. Many details of
granular phenomena depend on these parameters, and we
are still in the midst of the iteration evaluating them. More
specifically, we have an energy expression that is both sim-
ple and realistic, but the transport coefficients are in a less
satisfactory state: Their dependence on Tg, obtained from
more general considerations, seems quite universal, but
the density dependence is not. Varying with details pos-
sibly including rigidity, shape and friction of the grains,
they are material-specific and hard to arrive at in the ab-
sence of more systematic data. These need to be given by a
complete range of experiments in uniform geometries em-
ploying only one kind of grains. Nevertheless, in spite of
the tentative character of the density dependence assumed
below, our results do show at least qualitative agreement
with experiments and realistic constitutive models.

2.1 The state variables

A complete set of state variables is one that uniquely de-
termines a macroscopic state of the system. If it is given,
there is no room for ambiguity or “history-dependence”.
Conversely, any such dependences indicate that the set is
incomplete. In the hydrodynamic theory, a physical quan-
tity is a state variable if the energy density w depends
on it. In GSH, the state variables are, in addition to the
usual ones (the density ρ, the momentum density ρvi, the
true entropy s): the granular entropy sg and the elastic
strain uij . Entropy sg, along with Tg ≡ ∂w/∂sg, quanti-
fies granular jiggling and is closely associated with the av-
eraged velocity fluctuation δv̄ ≡

√
〈v2

i 〉 − 〈vi〉2. (It would
be wrong to take Tg ∼ δv̄2, such as given in the kinetic
theory, because any kinetic theory fails for Tg → 0, when
enduring contacts dominate, see [52], also [48,49,51].)

The elastic strain uij is associated with the deforma-
tion of the grains (or in DEM-jargon: their overlap). We
do not consider the true entropy s below, although it is
undoubtedly a state variable, because effects such as ther-
mal expansion are not at present under our focus. Fab-
ric anisotropy fij , the number of average contacts in dif-
ferent directions, is a useful microscopic characterization
of granular states. But there is insufficient evidence that
it is macroscopically independent. To keep GSH as sim-
ple as possible, our working hypothesis is that it is not.
In [53], Magnanimo and Luding employ fij to account
for the anisotropic velocity of elastic waves, because their
theory uses linear elasticity and does not have stressed-
induced anisotropy. GSH does and yields velocities very
close to the measured ones, without fij , see [54]. We note
that anisotropy of elastic waves that persists for isotropic
stress and uij would be a sign that fij is an independent
variable.

Denoting the (rest-frame or internal) energy density as
w = w(ρ, sg, uij), we define the conjugate variables as

μ ≡ ∂w

∂ρ
, Tg ≡ ∂w

∂sg
, πij ≡ − ∂w

∂uij
, (1)

calling μ is the chemical potential, Tg the granular tem-
perature, and πij the elastic stress. These are given once
the energy w is. (See [48–51] for a a treatment including
the true entropy s and temperature T ≡ ∂w/∂s.)

There are three spatial scales in any granular media:
(a) the macroscopic, (b) the mesoscopic or inter-granular,
and (c) the microscopic or inner granular. Dividing all
degrees of freedom (DoF) into these three categories, we
treat those of (a) differently from (b,c). Macroscopic DoF,
such as the slowly varying stress, flow and density fields,
are employed as state variables, but inter- and inner gran-
ular DoF are treated summarily: Only their contributions
to the energy are considered and taken, respectively, as
granular and true heat. So we do not account for the mo-
tion of a jiggling grain, only include its fluctuating kinetic
and elastic energy as contributions to the granular heat,∫

Tgdsg. Similarly, phonons are part of true heat,
∫

Tds.
There are a handful of macroscopic DoF (a), many inter-
granular ones (b), and innumerable inner granular ones
(c). So the statistical tendency to equally distribute the
energy among all DoF implies an energy decay: (a) →
(b,c) and (b) → (c). (In kinetic theories, assuming Tg � T
holds, the (b) → (c) decay is replaced by a constant resti-
tution coefficient [51].) This is what we call two-stage ir-
reversibility.

With vij ≡ 1
2 (∇ivj +∇jvi), v∗

ij its traceless part, v2
s ≡

v∗
ijv

∗
ij , the balance equation for sg (closely related to the

energy balance in the kinetic theory [55]) is

∂tsg +∇i(sgvi−κ∇iTg) = (ηgv
2
s +ζgv

2
��−γT 2

g )/Tg. (2)

Here, sgvi is the convective, and −κ∇iTg the diffusive,
flux. ηgv

2
s accounts for viscous heating, for the increase

of Tg because a macroscopic shear rate jiggles the grains.
A compressional rate ζgv

2
�� does the same, though not as

effectively [56]. The term −γT 2
g accounts for the relaxation

of Tg, the (b) → (c) decay of energy.
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Our second notion, variable transient elasticity, ad-
dresses the interplay between elaticity and plasticity. The
free surface of a granular system at rest is frequently tilted.
When perturbed, when the grains jiggle and Tg 	= 0,
the tilted surface will decay and become horizontal. The
stronger the grains jiggle and slide, the faster the decay
is. We take this as indicative of a system that is elastic
for Tg = 0, transiently elastic for Tg 	= 0, with a stress
relaxation rate ∝ Tg. A relaxing stress is typical of any
viscous-elastic system such as polymers [44]. The unique
circumstance here is that the relaxation rate is not a ma-
terial constant, but a function of the state variable Tg. As
we shall see, it is this variable transient elasticity —a sim-
ple fact at heart— that underlies the complex behavior of
granular plasticity. This is an insight that yields a most
economic way to capture granular rheology.

Employing the strain rather than stress as a state vari-
able yields a simpler description, because the former is a
geometric quantity, the latter a physical one (that includes
material constants such as the stiffness). Yet one cannot
use the standard strain εij , because the relation between
stress and εij lacks uniqueness when the system is plastic.
Engineering theories frequently divide the strain into two
fields, elastic uij and plastic εp

ij , with the first account-
ing for the reversible and second for the irreversible part.
They then employ εij and εp

ij as two independent vari-
ables to account for the elasto-plastic motion [57,58]. We
believe that, on the contrary, the elastic strain uij is the
sole state variable. As convincingly argued by Rubin [59],
there is a unique relation between uij and the elastic stress
πij . We take uij as the portion of the strain that de-
forms the grains, changes the elastic energy w = w(uij),
and builds up an elastic stress πij . Employing uij pre-
serves useful features of elasticity, especially the relation,
πij = −∂w(uij)/∂uij , cf. [48].

This is easy to understand via an simple analogy. The
wheels of a car driving up a snowy hill will grip the ground
part of the time, slipping otherwise. When the wheels grip,
the car moves and its gravitational energy w is increased
(same as only uij increases the elastic energy). Dividing
the wheel’s rotation θ into a gripping θ(e) and a slipping
θ(p) portion, we may compute the torque on the wheel as
∂w/∂θ(e) (same as πij = −∂w(uij)/∂uij). How much the
wheel turns or slips, how large θ or θ(p) are, is irrelevant
for the torque. The equation for uij is

∂tuij − vij + αijk�vk� = −(λijk�Tg)uk�, (3)

cf. [48] for the general expression including the objective
derivative. (In contrast to the total strain, the change in
the elastic one uij remains small, rendering the additional
terms irrelevant —unless one wants to describe, say, a ro-
tating sand pile.) If Tg is finite, grains jiggle and briefly
lose or loosen contact with one another, during which their
deformation is partially lost. Macroscopically, this shows
up as a relaxation of uij , with a rate that grows with Tg,
and vanishes for Tg = 0, with the lowest order term in a
Tg-expansion being λijk�Tg. Within its range of stability,
the energy w is convex, and −πij ≡ ∂w/∂uij is a mono-

tonic function of uij . So −πij , uij decrease and relax at
the same time, in accordance to eq. (3).

Conservation of momentum, ∂t(ρvi)+∇j(σij+ρvivj) =
giρ and mass, ∂tρ = −∇i(ρvi), close the set of equations.
The Cauchy stress σij is (see [48–51]):

σij = πij − αk�ijπk� + (PT − ζgv��)δij − ηgv
∗
ij , (4)

PT ≡ −∂(w/ρ)/∂(1/ρ) = Ts + Tgsg + μρ − w, (5)

where PT (that will turn out to be the kinetic pressure)
and πij are given by eqs. (1). The total stress σij , though
generally valid, is explicit only if w is given. The terms
∝ ζg, ηg are the viscous stress; the tensor αijk� is an off-
diagonal Onsager coefficient that couples the stress com-
ponents and softens them. The above expressions yield
the structure of GSH. Next, we specify the energy and
transport coefficients.

2.2 The energy

Due to a lack of interaction among the grains, the energy
density w vanishes when the grains are neither deformed
nor jiggling. Assuming w = wT (ρ, sg) + wΔ(ρ, uij), we
have wT → 0 for sg → 0, and wΔ → 0 for uij → 0.
So, considering slightly excited, stiff grains (such that the
lowest-order terms in uij , sg suffice), we take

wT = s2
g/(2ρb), wΔ =

√
Δ(2BΔ2/5 + Au2

s), (6)

πij =
√

Δ(BΔ + Au2
s/2Δ)δij − 2A

√
Δ u∗

ij , (7)

PΔ =
√

Δ(BΔ + Au2
s/2Δ), πs = −2A

√
Δ us, (8)

4PΔ/|πs| = 2(B/A)(Δ/us) + us/Δ, (9)

where Δ ≡ −u��, PΔ ≡ π��/3, u2
s ≡ u∗

iju
∗
ij , π2

s ≡ π∗
ijπ

∗
ij ,

with u∗
ij , π∗

ij the respective traceless tensors. wT is an
expansion in sg. The quadratic term is the lowest-order
one because sg ∼ Tg = 0 is an energy minimum. (As we
shall soon see, the s2

g-term is in fact sufficient to account
for fast dense flow and the gaseous state.)

Calling something a temperature, we also give it the
dimension kelvin or energy. Taking [sg] = 1/vol, [Tg] =
energy, implies [1/ρb] = energy×vol. But we note the fol-
lowing point: Equilibration, or equality of temperatures,
is usually a ubiquitous process, and what requires all tem-
peratures to possess the same dimension. However, gran-
ular media in “thermal contacts” do not usually equili-
brate —in the sense that the energy distribution is inde-
pendent of details, and the energy flux vanishes. Given
two different granular systems, 1 and 2, with only 1 being
driven, there are, in the steady state, four temperatures:
T 1, T 1

g , T 2, T 2
g , with an ongoing energy transfer: T 2

g → T 2

and T 1
g → T 1, T 2

g , such that none of the temperatures is
equal to another. The differences depend on details such as
the contact area and the respective restitution coefficients.
Only when the driving stops, will they eventually become
equal, but this is well approximated by T 1

g = T 2
g = 0.

Therefore, there is no harm in giving sg or Tg any dimen-
sions —as long as Tgsg is an energy density.
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Given eq. (6) with b = b(ρ), there is quite generally a
pressure contribution PT ,

−PT ≡ ∂(wT /ρ)
∂1/ρ

∣∣∣
∣
sg

=
∂[(wT − Tgsg)/ρ]

∂1/ρ

∣∣∣
∣
Tg

=
T 2

g ρ2

2
∂b

∂ρ
.

(10)
We choose b = b(ρ) such that it yields the kinetic pressure
∝ wT for the rarefied limit ρ → 0, and the usual form
∝ wT /(ρcp − ρ) in the dense limit ρ → ρcp, see [55,60],

b = b1ρ
a1 + b0

[
1 − ρ

ρcp

]a

,

PT =
wT

b

[
ab · ρ/ρcp

1 − ρ/ρcp
− a1b1ρ

a1

]
≡ gp(ρ)T 2

g , (11)

with a ≈ 0.1 a small positive number, and −a1 = 2/3, 1 for
two and three dimensions, respectively. For ρ → 0, we have
b ≈ b1ρ

a1 , PT ≈ −a1wT , with wT = 1
2ρδv̄2 = 3

2Tkρ/m in
three dimensions (where δv̄2 ≡ 〈v2

i 〉 − 〈vi〉2, Tk denotes
the temperature of the kinetic theory, and PT = Tkρ/m
the usual kinetic pressure). In the dense limit, the first
term in PT dominates, and the pressure is as desired ∝
wT /(ρcp − ρ). (The term ∝ b1 is new, and not in [48,49].)

Without equilibration, there is no thermometers that
measures Tg. It is therefore useful to relate Tg to δv̄, a
quantity that is directly measurable, at least in simula-
tions. This is easily done for two limits, because wT =
1
2ρδv̄2 or δv̄ = Tg

√
b in the rarefied one; and w = ρδv̄2

or δv̄ = Tg

√
b/2 in the dense one. (For ρ → ρcp, granu-

lar jiggling occurs in a network of linear oscillators, which
oscillate weakly around the static stress. So there is on
average as much potential energy as kinetic one.) We note
that, for given δv̄, the energy wT remains finite in both
limits, although b diverges and Tg vanishes for ρ → 0.

The expression for wΔ, with A,B > 0, is the elastic
contribution. Given by the energy of linear elasticity mul-
tiplied by

√
Δ, the form is clearly inspired by the Hertzian

contact, though its connection to granular elasticity goes
beyond that, and includes both stress-induced anisotropy
and the convexity transition (see below). The elastic stress
πij has been validated for the following circumstances,
achieving at least semi-quantitative agreement:

– Static stress distribution in three classic geometries:
silo, sand pile, point load on a granular sheet, calcu-
lated employing ∇iπij = ρgi, see [61–63].

– Incremental stress-strain relation, starting from vary-
ing static stresses [64,65].

– Propagation of anisotropic elastic waves at varying
static stresses [54,66].

Stress-induced anisotropy : In linear elasticity, w ∝ u2
s,

the velocity of an elastic wave ∝
√

∂2w/∂u2
s does not

depend on us, or equivalently, the stress. For any expo-
nent other than 2, the velocity depends on the stress, and
is anisotropic if the stress is. We note that uij and πij

from the expression of eq. (7) are colinear, in the sense
that u∗

ij/us = π∗
ij/πs holds (but not εij). They also have

the same principal axes. More recently, we have employed

a slightly more complicated wΔ that includes the third
strain invariant [67]. Here, colinearity is lost, but strain
and stress still share the same principle axis.

Convexity transition: In a space spanned by stress
components and the density, there is a surface that di-
vides two regions in any granular media, one in which
the grains are necessarily agitated, another in which they
may be in a static, non-dissipating state. The most obvi-
ous such surface exists with respect to the density —when
it is too small, grains loose contact with one another and
cannot stay static. The same holds if the shear stress is
too large for given pressure, say when the slope of a sand
pile is too steep. Note the collapse occurs in a completely
static system. This is qualitatively different from the criti-
cal state, because the latter, and the approach to it, takes
place in a dissipating system, at given rate and Tg. These
two require different descriptions, static versus dynamic.
We consider the static description here, and shall return
to the critical state in sect. 3.1.

In eq. (13), we introduce two material parameters, ρ�p

and ρcp. Calling the first the random-loose density, we take
it to be the lowest density at which any elastic state may
be maintained, where elastic solutions are stable. The sec-
ond, termed random-close density, is taken as the highest
one at which grains may remain uncompressed. For lack of
space, grains cannot rearrange at ρcp, and do not execute
any plastic motion.

The divide between two regions, one in which elastic
solutions are stable, and another in which they are not,
in which infinitesimal perturbations suffice to destroy the
solution, is the surface where the second derivative of the
elastic energy changes its sign, where it turns from convex
to concave. The elastic energy of eq. (6) is convex only for

us/Δ ≤
√

2B/A or πs/PΔ ≤
√

2A/B, (12)

turning concave if the condition is violated. (The second
condition may be derived by considering eq. (9), show-
ing PΔ/πs =

√
B/2A is minimal for us/Δ =

√
2B/A.)

Assuming B/A is density-independent (typically 5/3), de-
noting ρ̄ ≡ (20ρ�p − 11ρcp)/9, we take

B = B0[(ρ − ρ̄)/(ρcp − ρ)]0.15, (13)

with B0 > 0 a constant. This expression accounts for three
granular characteristics:

– The energy is concave for any density smaller than ρ�p.

– The energy is convex between ρ�p and ρcp, ensuring
the stability of any elastic solutions in this region. In
addition, the density dependence of sound velocities
(as measured by Harding and Richart [68]) is well ren-
dered by

√
B(ρ).

– The elastic energy diverges, slowly, at ρcp, approximat-
ing the observation that the system becomes an order
of magnitude stiffer there.

One may be bothered by the small exponent of 0.15, ques-
tioning whether we imply an accuracy over a few orders
of magnitude. We do not: Since B loses its convexity at
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ρ�p, the density is never close to ρ̄ (note ρ̄ < ρ�p < ρcp,
with ρcp − ρ�p ≈ ρ�p − ρ̄). And although ρ may in prin-
ciple be close to ρcp, it is very difficult to reach, and the
slow divergence is not really relevant. Given B(ρ), there is
also a contribution ∝ Δ2.5 to PT from wΔ. It is neglected
because it is (for small Δ) much smaller than the elastic
one, PΔ ∝ Δ1.5.

2.3 The dynamics

Dividing uij into its trace Δ ≡ −u�� and traceless part u∗
ij ,

and specifying the matrices αijk�, λijk� with two elements
each, α, α1, λ, λ1, the equation of motion (3) is written as

∂tΔ + (1 − α)v�� − α1u
∗
ijv

∗
ij = −λ1TgΔ, (14)

∂tu
∗
ij − (1 − α)v∗

ij = −λTgu
∗
ij , (15)

∂tus − (1 − α)vs = −λTgus. (16)

The third equation is valid only if strain and rate are co-
linear, u∗

ij/|us| = v∗
ij/|vs|. This is frequently the case for

a steady rate, because any non-colinear component of uij

relaxes to zero quickly. The coefficient α describes soft-
ening (if 0 < α < 1), or more precisely a reduced gear
ratio: The same shear rate yields a smaller deformation,
∂tuij = (1 − α)vij + . . ., but acts also at a smaller stress,
σij = (1−α)πij . . ., see eqs. (17), (18). α1 accounts for the
fact that shearing granular media will change the com-
pression Δ, implying dilatancy and contractancy. (More
Onsager coefficients are permitted by symmetry, but ex-
cluded here to keep the equations simple.) The Cauchy or
total stress is now

P ≡ σ��/3 = (1 − α)PΔ + PT − ζgv��, (17)
σ∗

ij = (1 − α)π∗
ij − α1u

∗
ijPΔ − ηgv

∗
ij , (18)

σs = (1 − α)πs + α1usPΔ + ηgvs. (19)

Again, the third equation (with σ2
s ≡ σ∗

ijσ
∗
ij) is valid only

if π∗
ij , u∗

ij and v∗
ij are colinear, π∗

ij/|πs| = −u∗
ij/|us| =

−v∗
ij/|vs|, often the case in steady state. The pressure P

and shear stress σs contain elastic contributions ∝ πs, PΔ

from eq. (8), and seismic (i.e. Tg-dependent) ones: PT ∝
T 2

g from eq. (11), and the viscous stress ∝ ηg, ζg. The
coefficients α, α1 soften and mix the stress components.
The term preceded by α1 is smaller by an order in the
elastic strain, and may be neglected, as we shall do in this
paper, if α1 is not too large.

The transport coefficients α, α1, ηg, ζg are functions
of the state variables, uij , Tg and ρ. As explained above,
they are to be obtained from experiments, in a trial-
and-error iteration. And the specification below is what
we at present believe to be the appropriate ones. Gen-
erally speaking, we find strain dependence to be weak
—plausibly so because the elastic strain is a small quan-
tity. One expand in it, keeping only the constant terms.
We also expand in Tg, but mostly eliminate the constant
terms, as we take granular media to be fully elastic for
Tg → 0, so the force balance ∇jσij = ρgi reduces to
its elastic form, ∇jπij = ρgi. This implies α, α1, ηg,
ζg, κg → 0 for Tg → 0. In addition, we take α, α1 to

saturate at an elevated Tg, such that rate-independence is
established. Hence

ηg = η1Tg, ζg = ζ1Tg, κ = κ1Tg,

α/ᾱ = α1/ᾱ1 = Tg/(Tα + Tg), (20)

with ᾱ, ᾱ1, η1, ζ1, κ1, Tα functions of ρ only. Expanding
γ in Tg yields γ = γ0 + γ1Tg. We keep γ0, because the
reason leading to eqs. (20) does not apply, and because
γ0 	= 0 ensures a smooth transition from the hypoplastic
to the quasi-elastic regime, see eq. (24) below. For lack
of better information, we take Tα and γ0/γ1 to be of the
same magnitude.

Since granular media are elastic at ρcp, we have
ᾱ, ᾱ1, λ, λ1 → 0 for ρ → ρcp, such that eqs. (14), (15)
assume the elastic form, while γ1, the relaxation rate for
Tg, and η1, the viscosity, diverge. Accordingly, we take
(with a1, a2, a3, a4, a5 > 0):

r ≡ 1 − ρ/ρcp, ᾱ = ᾱ0r
a1 , ᾱ1 = ᾱ10r

a2 ,

λ/λ0 = λ1/λ10 = ra3 , η1 = η10r
−a4 , γ1 = γ10r

−a5 .

(21)

(Close to ρcp, the dependence on ρcp − ρ is the sensi-
tive one, and we ignore any weaker ones on ρ directly.)
We stand behind the temperature dependence with much
more confidence than that of the density, for two reasons:
First, ρ is not a small quantity that one may expand in,
and we lack the general arguments employed to extract
the Tg-dependence. Second, not coincidentally, the ρ de-
pendence does not appear universal: a4 = a5 = 1 seems
to fit glass beads data, while a4 = 0.5, a5 = 1.5 appear
more suitable for polystyrene beads [69]. For the rest of
the paper, when discussing the density dependence qual-
itatively, we shall use what we call the exemplary values:
a1 = a2 = a3 = a4 = a5 = 1.

At given shear rates vs, the stationary state of eq. (2)
—with viscous heating balancing Tg-relaxation and ∂tsg =
0— is quickly arrived at (� 10−3 s), implying

γ1 h2 T 2
g = v2

s η1 + v2
�� ζ1, (22)

where
h2 ≡ 1 + γ0/(γ1Tg).

If the density is either constant or changing slowly, imply-
ing v2

�� ≈ 0, we have a quadratic regime for small Tg and
low vs, and a linear one at elevated Tg, vs:

Tg = |vs|
√

η1/γ1 for γ1Tg � γ0, (23)

Tg = v2
s(η1/γ0) for γ1Tg � γ0. (24)

As discussed in detail in the next section, the linear regime
is the hypoplastic one, in which the system displays elasto-
plastic behavior and the hypoplastic model holds. In the
quadratic regime, because Tg ∝ v2

s ≈ 0 is quadratically
small and negligible, the behavior is quasi-elastic, with
slow, consecutive visit of static stress distributions. Note
h = 1 in the hypoplastic regime, h → ∞ in the quasi-
elastic one.
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We revisit eq. (2), implementing the following simplifi-
cations: 1) ∇iTg is assumed to be small and linearized in;
so terms such as (∇iTg)2 are eliminated. 2) The convec-
tive term ∇i(sgvi) is taken to be negligible, as is v�� ≈ 0,
because density change is typically both small and slow.
3) An extra source term γ1h

2T 2
a is added to account for an

ambient temperature Ta, which are external perturbations
such as given by tapping or a sound field. Equation (2)
then reads

bρ∂tTg − κ1Tg∇2Tg = η1v
2
s − γ1h

2(T 2
g − T 2

a ). (25)

Generally speaking, any source contributing to Tg is al-
ready included. For instance, given a sound field and its
compressional rate vs

��, there is the term on the right-hand
side of eq. (2), ζ1(vs

��)
2. Coarse-graining it, we may set

〈ζ1(vs
��)

2〉 ≡ γ1h
2T 2

a . So adding such a term is simply a
convenient way to account for a non-specific source. Fi-
nally, we rewrite eqs. (14), (15), (16), (25) as coupled re-
laxation equations, dimensionally streamlined with 3 time
and 1 length scales,

∂tTg = −RT

[
Tg(1 − ξ2

T∇2)Tg − T 2
c − T 2

a

]
, (26)

Tc ≡ f |vs|, f2 ≡ 1
h2

η1

γ1
, RT ≡ γ1h

2

bρ
,

ξ2
T ≡ κ1

γ1h2
; (27)

∂tΔ + (1 − α)v�� = −λ1Tg[Δ − (Tc|us|/Tguc)Δc], (28)

∂tu
∗
ij = −λTg[u∗

ij − (Tc/Tg)u∗
ij |c], (29)

∂tus = −λTg[us − (Tc/Tg)uc], (30)

uc ≡ 1 − α

λf
,

u∗
ij |c
uc

≡
v∗

ij

|vs|
,

Δc

uc
≡ α1

λ1f

u∗
ij

|us|
v∗

ij

|vs|
. (31)

For constant shear rate and Ta, v�� = 0, we have Tg = Tc,
Δ = Δc, us = uc, u∗

ij = u∗
ij |c, with Δc, us, u∗

ij |c rate-
independent. It is customary in soil mechanics to refer
to this steady state as critical, though it is unrelated to
critical phenomena in physics. The relaxation rate TgRT

in dense media has an inverse time scale of order ms or
less. In comparison, the rates λTg, λ1Tg ∝ vs are small
for the shear rates typical of soil-mechanical experiments,
λTg = 1/s for vs = 10−2/s. The length scale ξT is a
few granular diameters. Rate-independence derives from
Tg ∝ Tc ≡ f |vs|, and is destroyed by any Ta 	= 0. (We note
that uc, Tc > 0, but us, vs may be negative. eq. (30) is ob-
tained by multiplying eq. (29) with u∗

ij/|us| and assuming
us > 0, u∗

ij/|us| = v∗
ij/|vs| = const, which is e.g. not right

in the load/unload experiment, as u∗
ij/|us| = −v∗

ij/|vs|
right after a rate reversal, see sect. 3.2.)

With the differential equations derived, the energy
density and transport coefficients in large part specified,
GSH is a well-defined theory. It contains clear ramifica-
tions and provides little leeway for retrospective adapta-
tion to observations. As we shall see in the following sec-
tions, a wide range of granular phenomena is encoded in
these equations.

2.4 Three rate regimes

Depending on the interaction between particles, granular
experiments are divided into three regimes: In the first, the
particles are static and elastically deformed; in the second,
they move slowly, rearranging by overcoming frictional
forces; in the third, they interact by collisions. Although
this interaction, of mesoscopic nature, is not manifest in a
macroscopic theory, GSH does have three regimes echoing
its variation, and the control parameter is how strongly
the grains jiggle —quantified as the granular temperature
Tg:

– At vanishing shear rates, grains do not jiggle, Tg → 0.
The stress stems from deformed grains and is elastic
in origin. Static stress distribution and the incremen-
tal stress-strain relation are phenomena of this regime.
Deviations from full elasticity, uij = εij and σij = πij ,
being quadratically small, α, α1, ηg, ζg, κg ∝ Tg ∝ v2

s ,
are frequently negligible. This is what we call the quasi-
elastic regime.

– At slow rates, Tg � γ0/γ1 is somewhat elevated,
see eq. (23). The elastic stress may now relax, im-
plying plasticity: When the grains jiggle and briefly
loosen contact with one another, the grains’ deforma-
tion and the associated stress will get partially lost,
irreversibly. We call this regime hypoplastic, because
this is where the hypoplastic model [4] and other rate-
independent constitutive relations are valid. Typical
phenomena are the critical state [1], and the different
loading/unloading curves. Friction is a result in GSH,
not an input, and it derives from the combined effect
of elastic deformation and stress relaxation. (In spite
of our borrowed usage of hypoplasticity, the reversible
part of the stress is derived from an energy potential.)

In the hypoplastic regime, we have Tg = Tc ≡ f |vs|,
α = ᾱ, α1 = ᾱ1 if Tα = 0. Equations (28), (29) for the
elastic strain are then explicitly rate-independent, and
the stress, generally given by eqs. (17)–(19), is simpli-
fied, because the kinetic pressure PT ∝ T 2

g and the
viscous stress η1Tgvs, both quadratic in the rate, are
negligibly small. The stress is σij = (1 − α)πij , where
the factor is typically between 0.2 and 0.3. The com-
plex elasto-plastic motions, observed mainly in triaxial
apparatus, take place in this regime.

– At high shear rates, large Tg and low densities, we are
in the regime of rapid dense flow. The jiggling is so
strong that it gives rise to a kinetic pressure and vis-
cous shear stress. They compete with the elastic one as
rendered by the μ-rheology [70]. We still have Tg ∝ vs

at higher rates, but it is no longer small. Therefore,
the kinetic pressure PT and the viscous stress become
significant and compete with the elastic contribution.
Both the total pressure and the shear stress may now
be written as e1+e2v

2
s , with e1, e2 functions of the den-

sity. The Bagnold regime is given for e2v
2
s � e1, where

all stress components depend quadratically on the rate.
Typically, since e1 � e2v

2
s for any realistic vs, it is not

easy to go continuously from the rate-indepedent to
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the Bagnold regime at given density. However, a dis-
continuous transition is possible at given pressure, be-
cause ρ decreases with vs, eventually going below ρ�p.
There is then no elastic solution, πij ≡ 0, or e1 = 0.
And the system is in a pure Bagnold regime.

For reasons discussed in detail in [51], it is difficult to ob-
serve the transition from the hypoplastic regime to the
quasi-elastic regime. And it has in fact not yet been done
systematically. This is probably why soil mechanics text-
books take the hypoplastic regime to be the lowest rate
one, referring to it as quasi-static. This is, we believe, con-
ceptually inappropriate, because motions in the hypoplas-
tic regime are irreversible and strongly dissipative, not
consecutive visits of neighboring static states with van-
ishing dissipation. Therefore, experiments at the very low
end of shear rates are highly desirable. (When pressed, we
need to guess. And we expect the quasi-elastic regime to
start somewhere below 10−5/s, with the rate-independent
hypoplastic regime above 10−3/s.)

Next, we employ the equations presented above to ac-
count for granular phenomena, first in the hypoplastic
regime, in which the complexity of granular behavior is
most developed and best documented. Then we consider
dense flow, including the μ-rheology and the Bagnold scal-
ing. This is followed by the non-uniform phenomena of
elastic waves, shear band and compaction. Finally, the
quasi-elastic regime of vanishing rates is considered, ex-
ploring why it is hard to observe, and how best to over-
come the difficulties.

3 The hypoplastic regime

Granular behavior in the hypoplastic regime are taken to
generally possess rate-independence —meaning for given
strain rates, the increase in the stress Δσij depends only
on the increase in the strain, Δεij =

∫
vijdt, not the

rate. As a result, engineering theories typically have rate-
independence built in from the beginning. We note that
it is not at all a robust feature of granular behavior. For
instance, it is lost when the system is subject to an am-
bient temperature Ta (such as given by a sound field, see
the discussion around eq. (25)): The critical stress then
becomes strongly rate-dependent, vanishing for large Ta.
And it does not extend into the higher rates of dense flow.
Therefore, rate-independence is a phenomenon that cries
out for an explanation, an understanding.

Moreover, it is crucial to distinguish between rate- and
stress-controlled experiments. When the rate is given, Tg

quickly settles into its steady state value Tc, see eq. (26),
then the relaxation of us, accounting for the approach to
the critical state, is independent of the rate, see eq. (30).
A rather different experiment is to hold the shear stress
σs fixed, starting with an elevated Tg. This Tg will relax
until it is zero, and the system static. There is also a rate
in this case, referred to as creep sometimes —the one that
compensates the stress relaxation at a finite Tg. Being pro-
portional to Tg, this rate relaxes toward zero at the same
time. Rate-independence is therefore a misplaced concept
here.

Stress-controlled experiments cannot be performed in
triaxial apparatus with stiff steel walls, because the cor-
recting rates employed by the feedback loop to keep the
stress constant are of hypoplastic magnitudes. As a re-
sult, much Tg is excited that distorts its relaxation, and
the situation is one of consecutive constant rates, not of
constant stress. Instead, one may employ a soft spring
to couple the granular system with its driving device, to
enable small-amplitude stress corrections without excit-
ing much Tg. We consider rate-controlled experiments in
sects. 3.1, 3.2, and 3.3, stress-controlled ones in sect. 3.4,
and experiments subject to an ambient temperatures Ta

in sect. 3.5.

3.1 The critical state

Grains with enduring contacts are deformed, which gives
rise to an elastic stress. The deformation is slowly lost
when grains rattle and jiggle, because they lose or loosen
contact with one another. As a consequence, a constant
shear rate not only increases the deformation, as in any
elastic medium, but also decreases it, because grains jiggle
when being sheared past one another. A steady state exists
in which both processes balance, such that the deforma-
tion remains constant over time —as does the stress. This
is the critical state. Moreover, the increase in deformation
is ∝ vs, the relaxation is ∝ Tg. As Tg ∝ vs for elevated
granular temperature, the steady-state, especially the crit-
ical stress, are rate-independent. In this section, we show
how GSH mathematically codify this physics.

3.1.1 Stationary elastic solutions

The critical state is given by the stationary solution Tg =
Tc, Δ = Δc, us = uc, with

uc =
1 − α

λ

vs

Tg
=

1 − α

λf
,

Δc

us
=

α1

λ1

vs

Tg
=

α1

λ1f
, (32)

see eqs. (26)–(29). Because further shearing does not lead
to any stress increase, this state is frequently referred to
as ideally plastic [71]. Note uc, Δc are rate-independent
(for α = ᾱ, α = ᾱ, Ta = 0) and functions of the density.
Same holds for the critical stress, cf. eqs. (7)–(9),

Pc = (1 − ᾱ)P c
Δ, σc = (1 − ᾱ)πc, (33)

P c
Δ ≡ PΔ(Δc, uc), πc ≡ πs(Δc, uc), (34)

P c
Δ/πc = (B/2A)Δc/uc + uc/4Δc. (35)

The loci of the critical states thus calculated [72] (though
employing the slightly more general energy of [67]) greatly
resembles those calculated using either hypoplasticity or
barodesy [73–75]. The critical ratio σc/Pc —the same as
the Coulomb yield of eq. (12)— is also frequently associ-
ated with a friction angle. Since one is relevant for vanish-
ing Tg, while the other requires an elevated Tg ∝ |vs|, it
is appropriate to identify one as the static friction angle,
and the other as the dynamic one. The latter is smaller
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Fig. 1. Three approaches to the critical state: These are the results of GSH calculations employing the parameter sets I, II,
III as specified in the text. Shear stress q ≡ (σ3 − σ1)/σ1 and void ratio e ≡ ρg/ρ − 1 (with ρg the grain’s density) versus the
strain ε3 in triaxial tests (cylinder axis along 3), at given σ1 and strain rate ε3/t, for an initially dense and loose sample.

than the former, because the critical state is elastic, and
must stay below Coulomb yield, λ1f/ᾱ1 <

√
2B/A, if it is

viable. Textbooks on soil mechanics state that the friction
angle is independent of the density —although they do
not, as a rule, distinguish between the dynamic and the
static one. We assume, for lack of better information, that
both are, or 2(a3 − a2) = a5 − a4, see eq. (21). Separately,
both Δc and uc should increase with ρ → ρcp, same holds
for Pc and σc.

3.1.2 Approach to the critical state at constant density

Solving eqs. (40), (41) for us, Δ, at constant ρ, vs, with
h = α/ᾱ = α1/ᾱ1 = 1, and the initial conditions: Δ = Δ0,
us = 0, the relaxation into the critical state is given as

us(t) = uc(1 − e−λfεs), εs ≡ vst,

Δ(t) = Δc

(
1 + f1 e−λfεs + f2e

−λ1fεs

)
,

f1 ≡ λ1

λ − λ1
, f2 ≡ Δ0

Δc
− λ

λ − λ1
. (36)

Clearly, this is an exponential decay for us, and a sum of
two decays for Δ. It is useful, and quite demystifying, that
a simple, analytical solution in terms of the elastic strain
exists. Because λ ≈ 3.3λ1, the decay of us and f1 are
faster than that of f2. Note that f2 may be negative, and
Δ(t) is then not monotonic. The associated pressure and
shear stress are those of eqs. (33)–(35). For a negative f2,
neither the pressure nor the shear stress is monotonic. For
the system to complete the approach to the critical state,
the yield surface (such as given by eq. (12)) must not be
breached during the non-monotonic course. If it happens,
there is an instability, and the most probable result are
shear bands, see sects. 3.6, 4.2 below. Then the uniform
critical state will not be reached.

3.1.3 Approach to the critical state at constant pressure

Frequently, the critical state is not approached at con-
stant density, but at constant pressure P (or a stress eigen-
value σi). The circumstances are then more complicated.
As Δ, us approach Δc, uc, the density compensates to
keep P (ρ,Δ, us) = const. Along with ρ, the coefficients
α, α1, λ, λ1, f (all functions of ρ), also change with
time. In addition, with ρ changing, the compressional flow
v�� = −∂tρ/ρ no longer vanishes (though it is still small).
Analytic solutions do not seem feasible now, but numerical
ones are, see fig. 1, which compares three sets of parame-
ters by plotting the deviatory stress versus axial strain at
given σ1. Clearly, any could serve as a textbook illustra-
tion of the approach to the critical state. The parameters,
see eqs. (21), labeled as I, II, III, are

– B0 = 2, 0.22, 0.05GPa, B/A = 5/3, 8, 5/3, ρ̄/ρcp =
0.615, 0.650, 0.667,

– ᾱ0 = 1.04, 0.85, 16.25, ᾱ10 = 400, 30, 719,

– λ0

√
η10/γ10 = 272, 250, 2375, λ/λ1 = 3.8, 3.8, 3,

– a1 = 0.15, 0.15, 1.6, a2 = 1, 0.15, 1.6, a3 = 0.6, 0.53,
1.6, a4 = a5 = 0, 0, −1.

Figure 2 compares I to the (drained monotonic triaxial)
experiment by Wichtmann [76], II to the simulation by
Thornton and Antony [77], both in the plots as originally
given. The comparison of III to the barodesy model [73–
75] may be found in [72].

Generally speaking, we have three scalar state vari-
ables: ρ, us, Δ, each with an equation of motion that de-
pends on the rates vs, v�� and the variables themselves.
In addition, P , σs are functions of ρ, us, Δ. In the last
section, both rates were given, v�� = 0, vs = const.
As a result, we have ρ = const, while Δ(t) and us(t)
were calculated taking the coefficients α(ρ), α1(ρ), λ(ρ),
λ1(ρ), f(ρ) as constant. The stress components were then
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Fig. 2. A GSH calculation employing I for comparing to the Wichtmann’s experiment, and II to the simulation by Thornton
and Antony, in the plots as originally given in [76,77].

obtained as dependent functions. A pressure-controlled
experiment means that only the shear rate vs is given.
Holding P (ρ, us,Δ) = const (or analogously σ1) implies
the density ρ (and with it also v�� = −∂tρ/ρ) is a de-
pendent function, ρ = ρ(P, us,Δ). Now, in the equations
of motion for us and Δ, one first eliminates v�� employ-
ing v�� = −∂tρ/ρ, then eliminates both ∂tρ/ρ and the
ρ-dependence of α(ρ), α1(ρ), λ(ρ), λ1(ρ), f(ρ) employing
ρ = ρ(P, us,Δ). This changes the differential equations
—which are then solved numerically.

Many well-known features of fig. 1 can be understood
assuming the solutions of eq. (36) remain valid, say be-
cause the initial density is close to the critical one, hence it
does not change much during the approach to the critical
state. As a result, we may approximate α(ρ), α1(ρ), λ(ρ),
λ1(ρ), f(ρ) as constant, and take v�� ≈ 0. In addition, we
assume, for simplicity, λ � λ1, or λ/(λ−λ1) ≈ 1 (instead
of ≈ 1.5). Then f2 has the same sign as Δ0−Δc. The initial
values are ρ0, Δ0 and us = 0, implying P ∝ B(ρ0)Δ1.5

0 ,
σs = 0. For P given and B(ρ) monotonically increasing
with ρ, the pair Δ0 −Δc and ρ0 − ρc have reversed signs.
Therefore, we have a monotonic change of density for
f2 > 0, Δ0 > Δc, ρ0 < ρc, and non-monotonic change
otherwise. At the beginning, the faster relaxation of f1

dominates, so Δ always decreases, and ρ always increases,
irrespective of ρ0. After f1 has run its course, ρ goes on
increasing for ρ < ρ0 (contractancy) but switches to de-
creasing for ρ > ρ0 (dilatancy), until the critical state is
reached. The shear stress σs ∝ σ1 − σ2 always increases
first with us, until us is close to uc. The subsequent behav-
ior depends on what Δ does. With P ∝ B(ρ0)Δ1.5

0 given,
σs ∝ BΔ0.5 ∝ P/Δ keeps growing if Δ decreases (loose

case, f2 > 0), but becomes smaller again, displaying a
peak, if Δ grows (dense case, f2 < 0).

3.1.4 Shear jamming

A jammed state is one that can stably sustain a finite
stress, especially an anisotropic one. It is therefore char-
acterized by values for Δ,us that satisfy the stability con-
ditions us/Δ ≤

√
2B/A, or eq. (12). An unjammed state

violates either this or another stability conditions, such as
φ�p < φ < φcp (where φ ≡ ρ/ρg, with ρg the bulk den-
sity, is the packing fraction). Typically, the critical state
is approached starting from an isotropic stress, Δ = Δ0,
us = 0. But the approach solution eq. (36) is also valid if
the initial elastic shear strain is finite, us 	= 0. Writing the
solution to first order in the shear strain εs ≡ vst,

us(t) = ucλfεs,

Δ(t) = Δ0(1 − λ1fεs), (37)

we see a growing us and a decreasing Δ for the initial
stage. This is the reason that, if Δ0 is sufficiently small,
the system will become unstable first, before it re-enters
the stable region, converging eventually onto the criti-
cal state. Shear-jamming at constant density, as observed
in [78] and simulated in [79], is exactly this process, start-
ing from the initial value Δ, us = 0, or equivalently, from
vanishing elastic pressure and shear stress, PΔ, πs = 0. So
the system is unstable at the beginning, until Δ is suffi-
ciently large to satisfy eq. (12), and the system is securely
jammed. Further steady shearing then pushes the system
into the critical state.
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Fig. 3. Suppression of the critical shear stress σc
s by vibration

as given by eq. (39), assuming Γ = αTa, Ω = βv3
s (see text

for details). Inset is the experimental curve of [80], with the
torque τ denoted as T , as in [80]. (The stress dip at large Ω,
neglected here, is explained in [81].)

3.1.5 The critical state with external perturbations

If one perturbs the system, say by exposing it to weak
vibrations, or by tapping it periodically, such as in a recent
experiment [80], the critical state is modified, and a rate-
dependence of the critical shear stress is observed. The
stress decreases with the shaking amplitude, and increases
with the shear rate, such that the decrease is compensated
at higher rates. Clearly, engineering theories with built-
in rate-independence cannot account for this observation.
GSH, on the other hand, if it indeed provides a wide-range
description of granular behavior, should be able to.

The consideration of the critical state in the previous
three sections takes any granular temperature Tg to be a
result of the given shear rate, hence Tg = Tc ≡ |vs|f . This
is no longer the case here, as sound field or tapping also
contributes to Tg. And we have eq. (26),

T 2
g = T 2

c + T 2
a . (38)

This is the reason the steady state values are reduced to
ūc ≡ (Tc/Tg)uc, Δ̄c ≡ (Tc/Tg)2Δc, see eqs. (28)–(30),
with

ū2
c

u2
c

=
Δ̄c

Δc
=

σ̄c

σc
=

1
1 + T 2

a /T 2
c

. (39)

If there is no tapping, Ta = 0, we retrieve the unperturbed
values, ūc = uc, Δ̄c = Δc, σ̄c = σc. With tapping, ūc, Δ̄c,
σ̄c decrease for increasing Ta, and increase with increas-
ing shear rate Tc ≡ f |vs|, see fig. 3. (Note we have only
considered the critical state at given shear rate, not the
approach to it. So the result holds both at given density
and pressure.)

The above consideration is the basic physics of
the observation reported in [80]. It helps to put rate-
independence, frequently deemed a fundamental property
of granular media, into the proper context. A more de-
tailed comparison is unfortunately made difficult by the

Fig. 4. The hysteretic change of the shear stress ∝ us with the
strain, as given by eq. (41). The sign of vs(t), εs ≡

R t

0
vs(t

′)dt′,
and us(t) are given respectively in (b), (c) and (d).

highly non-uniform experimental geometry. Nevertheless,
some comparison, even if unabashedly qualitative, may
still be useful. In [80], the torque τ on the disk on top of
a split-bottom shear cell is related to its rotation velocity
Ω and the shaking acceleration Γ . Now, τ and σc, Ω and
vs, Γ and Ta, are clearly related pairs, see also sect. 6. As-
suming the lowest-order terms suffice in an expansion, we
take σc ∝ τ and Γ = c1Ta with c1

√
η1/γ1 = 20 s (noting

Tg is dimensionless with an appropriate b). If vs were uni-
form, Ω ∝ vs would also hold. Since it is not, Ω ∝ vn

s with
n > 1 seems plausible, because with additional degrees of
freedom such as position and width of the shear band, the
system has for given Ω more possibilities to decrease its
strain rate vs. We take Ω = c2v

3
s with c2 = 1rs2 (imply-

ing a replacement of Ta/vs with Γ/ 3
√

Ω in eq. (39)) for
the fit of fig. 1, but emphasize that qualitative agreement
exists irrespective of n’s value. In [80], a stress dip was in
addition observed at higher rates, see fig. 1. This is also
accounted for by GSH, see sects. 4.1 and [81].

3.2 Load and unload

The simple reason for the difference between load and un-
load is that the stationary values Δc, uij∗ |c of eqs. (28),
(29) are altered when the shear rate v∗

ij is reversed. The
relaxation then proceed towards these new values, see the
final paragraph of sect. 2.3. It is simple and deterministic
and not in anyway history-dependent. We insert Tg = f |vs|
into eqs. (14), (16),

∂tΔ = vs α1us − |vs|λ1fΔ, (40)
∂tus = vs (1 − α) − |vs|λfus, (41)

to see that loading (vs = |vs| > 0) and unloading (vs =
−|vs| < 0) have different slopes: ∂tus/vs = (1 − α) ∓
(λfus/h). Referred to as incremental non-linearity in soil
mechanics, this phenomenon is the reason why no back-
tracing takes place under reversal of shear rate: Starting
from isotropic stress, us = 0, see fig. 4, the gradient is
at first (1 − α), becoming smaller as us grows, until it
is zero, in the stationary case ∂tus/vs = 0. Unloading
now, the slope is (1 − α) + (λfus/h), steeper than it has
ever been. It is again (1 − α) for us = 0, and vanishes
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for us sufficiently negative. The same scenario holds for
∂tΔ/vs. The stress components P , σs are calculated em-
ploying eqs. (8), (17), (19) for given Δ, us. This considera-
tion holds only for a given density, it is more complicated
if the pressure is given instead, as in sect. 3.1), but the
basic physics remains the same.

In systematic studies employing discrete numerical
simulation, Roux and coworkers have accumulated great
knowledge about granular physics, see, e.g., [82,83]. They
distinguish between two types of strain, I and II, identi-
fying two regimes in which either dominates. This result
agrees well with the above consideration, as the relaxation
term in eq. (41), being ∝ us is small if us ∝ σs is. Slow
relaxation means the system is less plastic, more elastic
and the difference between load and unload is small.

3.3 Constitutive relations

Granular dynamics is frequently modeled employing the
strategy of rational mechanics, by postulating a function
Cij —of the stress σij , strain rate vk�, and density ρ—
such that the constitutive relation, ∂tσij = Cij(σij , vk�, ρ)
holds. (More generally, ∂t is to be replaced by an appropri-
ate objective derivative.) It forms, together with the conti-
nuity equation ∂tρ +∇iρvi = 0, momentum conservation,
∂t(ρvi) + ∇j(σij + ρvivj) = 0, a closed set of equations
for σij , the velocity vi, and the density ρ (or void ratio e).
Both hypoplasticity and barodesy considered below be-
long to this category. (We do not consider elasto-plastic
theories, but do note that, as shown by Einav [84], they all
form a special limit of the hypoplastic ones) These models
yield, in their range of validity, a realistic account of the
complex elasto-plastic motion, providing us with highly
condensed and intelligently organized empirical data. This
enables us to validate GSH and reduce the latitude in spec-
ifying the energy and transport coefficients.

The drawbacks are, first of all, the apparent freedom in
fixing Cij —constrained only by the data one considers,
not by energy conservation or entropy production (that
were crucial in deriving GSH). This is probably the reason
why there are many competing engineering models. And
this liberty explodes when one includes gradient terms,
hence most models refrain from the attempt to account
for non-uniform situations, say elastic waves.

Second, dispensing with the the variables Tg and uij ,
one reduces the model’s range of validity. For instance,
they hold only for Tg = Tc ≡ f |vs| and not for a Tg

that is either too small or oscillates too fast. Also, as the
analytical solution of the approach to the critical state
shows, considering uij is a highly simplifying intermediate
step. The case for uij is even stronger when considering
proportional paths and the barodesy model, see below.

3.3.1 The hypoplastic model

The hypoplastic model starts from the rate-independent
constitutive relation,

∂tσij = Hijk�vk� + Λij

√
v2

s + εv2
��, (42)

postulated by Kolymbas [4], where Hijk�, Λij , ε are func-
tions of the stress and void ratio. The simulated granu-
lar response is realistic for deformations at constant or
slowly changing rates. Taking h = 1, α = ᾱ, α1 = ᾱ1,
PT , η1Tgv

0
ij → 0, GSH easily reduces to the hypoplas-

tic model. This is because σij of eqs. (17), (18) is then,
same as πij , a function of uij , ρ, and we may write
∂tσmn = (∂σmn/∂uij)∂tuij + (∂σmn/∂ρ)∂tρ. Replacing
∂tρ with −ρv��, ∂tuij with eq. (15), using eq. (23) to elim-
inate Tg, we arrive at an equation with the same structure
as eq. (42). Our derived expressions for Hijk�, Λij is dif-
ferent from the postulated ones, and somewhat simpler,
but they yield very similar results, especially response el-
lipses [56]. (Response ellipses are the strain increments as
the response of the system, given unit stress increments in
all directions starting from an arbitrary point in the stress
space, or vice versa, stress increments as the response for
unit strain increments.)

3.3.2 Proportional paths and barodesy

Barodesy is a recent model, again proposed by Kolym-
bas [73–75]. It is more modular and better organized than
hypoplasticity, with different parts in Cij taking care of
specific aspects of granular deformation, especially that
of proportional paths. We take pεp and pσp to denote,
respectively, proportional strain and stress paths. Their
behavior is summed up by the Goldscheider rule (gr):

– A pεp starting from the stress σij = 0 is associated
with a pσp. (The initial value σij = 0 is a mathemati-
cal idealization, neither easily realized nor part of the
empirical data. We take it cum grano salis.)

– A pεp starting from σij 	= 0 leads asymptotically to
the same pσp obtained when starting at σij = 0.

Any constant strain rate vij is a pεp. In the princi-
pal strain axes (ε1, ε2, ε3), a constant vij means the sys-
tem moves with a constant rate along its direction, with
ε1/ε2 = v1/v2, ε2/ε3 = v2/v3 independent of time. gr

states there is an associated stress path that is also a
straight line in the principal stress space, that there are
pairs of strain and stress path. And if the initial stress
value is not on the right line, it will converge onto it.

Again, if GSH is indeed a broad-ranged theory on gran-
ular behavior, we should be able to understand gr with
it, which is indeed the case. But we need to generalize the
stationary solution as given by eq. (31) to include v�� 	= 0
(using ni to imply non-isochoric),

uc =
1 − α

λf
,

Δni
c

uc
=

α1

λ1f
+

1 − α

ucλ1f

v��

vs
, (43)

with σ∗
ij/σs = u∗

ij |c/uc = v∗
ij/vs. If the strain path is iso-

choric, v�� = 0, ρ = const, both the deviatoric strain and
stress are dots that remain stationary —these are the crit-
ical state considered in sect. 3.1. If however v�� 	= 0, with
the density ρ[t] changing accordingly, u∗

ij |c = uc(ρ) v∗
ij/vs

and σ∗
ij = σs(ρ) v∗

ij/vs will walk down a straight line along
v∗

ij/vs, with a velocity determined, respectively, by uc(ρ[t])
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Fig. 5. Upper row: radial stress σ1 versus axial stress σ3, rescaled by B0κ
−3/2 (with κ ≡

√
ζ1γ1/ρb). Middle row: radial

strain ε1 =
R

vxxdt versus axial strain ε3 =
R

vzzdt. Lower row: e − e0 (with e0 the initial void ratio) versus shear strain
εq =

R

(vzz − vxx)dt, rescaled by ν1κ. The stress loads are isobaric for (a,c), and nearly (or quasi-) isobaric for (b,d); the cyclic
amplitude is small for (a,b) and large for (c,d). The associated strain loci and void ratio are: sawtooth-like for (a), coil-like for
(b), butterfly-like (or double-looped) for (c,d).

and σs(ρ[t]). Given an initial strain deviating from that
prescribed by eq. (43), u0 	= uc, Δ0 	= Δni

c , eqs. (28),
(29) clearly state that the deviation will relax, implying
the strain and the associated stress will converge onto
the prescribed line. This is all very well, but gr states
that it is the total stress that possesses a pσp. With
πij = PΔ(ρ)[δij + (πs/PΔ)v∗

ij/vs], this fact clearly hinges
on (πs/PΔ) —a function of Δ/us, see eq. (9)— not de-
pending on the density. As long as v�� � vs, we have
Δni

c /uc ≈ α1/λ1f , which we did assume in eq. (21) is
density-independent, to render the dynamic friction angle
(that of the critical state) independent of ρ.

When looking at Cij , it is easy to grasp that the con-
struction of a constitutive relation requires vast experience
in handling granular media. That we could substitute this
deep knowledge with the equations of GSH that are just
as capable of accounting for elasto-plastic motion, is eye-
opening. It suggests that sand, in its qualitative behavior,
may be, after all, neither overly complicated, nor such a
rebel against general principles.

In [72,85], the results of GSH are compared to that of
barodesy and hypoplasticity, with frequently quantitative
agreement, Some typical curves as produced by GSH are
given here, see figs. 5 and 6, and the two papers for more
details and the values for the parameters.

3.4 Stress-controlled experiments

Only rate-controlled experiments have been considered up
to now. Employing eqs. (26), (28), (29), we found that

the granular temperature quickly becomes a dependent
quantity, Tg = Tc ≡ f |vs|, essentially reducing GSH to
the hypoplastic model, with the exponential relaxation of
Δ, us reproducing the approach to the critical state. In
this section, we examine what happens if we instead hold
the shear stress σs = (1 − ᾱ)πs constant. (As discussed
in the introductory sentences at the beginning of sect. 3,
rate-independence is a misplaced concept here.) Typical
examples of experiments of given shear stresses includes
relaxation of Tg ∝ vs and shallow flows on an inclined
plane or in rotating drums. In the second case, there is
a delay between jamming (angle of repose ϕre) and flu-
idization (angle of stability ϕst), with ϕst larger by a few
degrees. All these are considered below.

3.4.1 Diverging strain and long-lived temperature

If Tg = 0, the system stays static, σs = const, and there
is no dynamics at all. If Tg is initially elevated, us relaxes,
and with it also the stress σs. Maintaining a constant σs

(or similarly, a constant us) therefore requires a compen-
sating shear rate vs. As long as Tg is finite, vs(t) will accu-
mulate, resulting in a growing shear strain εs(t) =

∫
vsdt.

As we shall see, for us close to its critical value uc, the
characteristic time of Tg is ∝ (1 − u2

s/u2
c)

−1 and long.
Adding in the fact that the relaxation of Tg is algebraically
slow rather than exponentially fast, the accumulated shear
strain can be expected to be rather large.

In a recent experiment, Nguyen et al. [86] pushed the
system to a certain shear stress at a given and fairly fast
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Fig. 6. In the geometry of triaxial tests, various quantities are computed employing GSH, as functions of the strain εxx, holding
σxx = σyy constant. (The axial direction is z. The case with an initially higher density is rendered in solid lines, the looser one
in dashed lines.) These are: (a) deviatoric stress q ≡ σzz − σxx; (b) void ratio e; (c) volumetric strain εv; (d) the friction ange,
sin φm ≡ q/(2σxx + q). We chose: α, α1, λ ∼ (1 − ρ/ρcp)1.6 and η1, γ1 ∼ (1 − ρ/ρcp)−1.

rate, producing an elevated Tg. Then, switching to main-
taining the shear stress, they observed the accumulation
of a large total strain εs(t) that appears to diverge loga-
rithmically. The authors referred to this phenomenon as
creeping, and took it to be a compelling evidence that in
spite of the very slow motion, their experiment contains
a dynamics and was not quasi-static. we note that this
conclusion sits well with a basic contention of GSH, that
what is usually taken as quasi-static motion is in fact hy-
poplastic, with an elevated Tg, as discussed above, see also
sect. 7 below.

This experiment may in principle be accounted for by
the equations of GSH, though due to the highly non-
uniform stress distribution, this would require solving a
set of non-linear partial differential equations with coeffi-
cients as yet uncertainly known. Hence we only consider
a shear-stress controlled experiment in the hypoplastic
regime with uniform variables. Also, we first assume that
it is the elastic shear strain us that is being kept constant,
not the shear stress σs ∝

√
Δ us, as both cases will turn

out to be rather similar. The relevant equations are still
eqs. (26), (28), (29). At the beginning, as the strain is be-
ing ramped up to us employing a constant rate v1, the
granular temperature acquires the elevated initial value
T0 = fv1. Starting at t = 0, us is being held constant.
From eq. (29), we therefore conclude

f |vs|/Tg ≡ Tc/Tg = us/uc, (44)

with vs the rate needed to compensate the stress relax-
ation. Inserting this into eqs. (26), (28),

∂tΔ = −λ1Tg[Δ − (us/uc)2Δc], (45)

∂tTg = −rT T 2
g , rT ≡ RT [1 − u2

s/u2
c ], (46)

we find the Tg-relaxation rate reduced from RT to rT .
Both equations may be solved analytically, if the coeffi-
cients are constant, which they are if the density is. The
pressure P (t) will then change with time, same as Δ(t).
This is what we consider here. (Keeping the pressure con-
stant implies time-dependence of density and coefficients.
Then, as with the critical state considered in sect. 3.1.3,
a general solution is possible only by numerical methods.)
The first equation accounts for the relaxation of Δ, from
both below and above (us/uc)Δc. The relaxation is faster
the more elevated Tg is. Employing the initial condition
Tg = T0 at t = 0, and setting h = 1, the solution to the
second equation is

Tg = T0/(1 + rT T0t). (47)

Because of eq. (44), the solution holds also for the shear
rate, vs = v0/(1 + rvv0t), with v0 ≡ T0/f and rv ≡
(fuc/us)rT . This implies a slowly growing total shear
strain

εs − ε0 ≡
∫

vsdt = ln(1 + rvv0t)/rv. (48)
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However, εs does not diverge, because as Tg diminishes,
it eventually enters the quasi-elastic regime, γ1h

2T 2
g →

γ0Tg, where its relaxation is exponential. More specifically,
writing eq. (46) as ∂tTg = −(r0 + rT Tg)Tg, with r0/γ0 =
rT /γ1, we have the general solution

Tg = r0[(rT + r0/T0) exp(r0t) − rT ]−1. (49)

Assuming a large T0 (implying large rate to ramp up
the stress), Δ is quickly relaxed, Δ = (us/uc)2Δc. Fixing
us is then equal to fixing the shear stress, σs ∝ πs ∝
us

√
Δ = (u2

s/uc)
√

Δc. With πc ∝
√

Δc uc, one may
rewrite the factor in rT as

1 − u2
s/u2

c = 1 − πs/πc ≈ 1 − σs/σc. (50)

The Tg-relaxation is slower the closer πs is to πc, infinitely
so for πs = πc. Then we have us = uc, Δ = Δc, with
Tg(t) = T0 a constant, see eqs. (44), (45), (47). This is
indistinguishable from the rate-controlled critical state,
which may be maintained clearly also at given stress.

If one chooses to keep σs constant from the beginning,
irrespective how far Δ has relaxed, one needs to require
∂tus = (us/2Δ)∂tΔ, resulting in a different proportional-
ity vs ∝ Tg to be inserted into the equations of motion.
The results are similar.

Next, we keep both the pressure and shear stress con-
stant from the beginning. Though the general consider-
ation does not appear analytically viable, one solution
of a realistic situation exists: Keeping Δ, us = const in
eqs. (28), (30), we have

us

uc
=

Tc

Tg
,

Δ

Δc
=

T 2
c

T 2
g

− v��

Tg

1 − α

λ1Δc
. (51)

For given Δ, taking us such that Δ/Δc = u2
s/u2

c , we have
v�� = 0 and a constant density. Inserting us/uc = Tc/Tg

into the balance equation for Tg, eq. (26), we again obtain
eq. (46) with (50). The only difference is that there is now
a clear prescription for the experiment, because constant
Δ, us, ρ means that pressure P and shear stress σs are
kept constant. So one proceeds by applying an arbitrary
pressure, then varying the shear stress until the density
no longer changes. Tg, vs will then be as calculated.

Comparable calculation and analysis were carried out
in [86], using two scalar equations that may roughly be
mapped to the present ones. The quantities: granular tem-
perature Tg, its relaxation and production rate, RT and
RT f2, were referred to as fluidity, aging and rejuvenation
parameter. The above consideration is therefore not new,
but does provide a tensorial treatment that is embedded
in GSH, rendering it transparent, unified, and more real-
istic, also affording a better founded understanding. We
also not that temporary, localized regions of strong defor-
mation (called hot spots) were observed, with the fluidity
(the averaged value of which is Tg) identified as their rate
of occurrence.

As the stress distribution in the experiments of [86]
is rather non-uniform, there will always be areas with a
shear stress close to σc. And the system will tend to cave

in there, resulting in a larger strain accumulation than
what the average value for σs would predict.

In the experiment, a very soft spring was used to couple
the fan and the motor. This we believe is essential why this
experiment turned out as observed. Usually, triaxial ap-
paratus with stiff walls are used. And the correcting rates
employed by the feedback loop to keep the stress constant
are of hypoplastic magnitudes. As a result, much Tg is ex-
cited, and we have the situation of consecutive constant
rates, not that of constant stress. The soft spring, as dis-
cussed above, and in greater detail in sect. 7.2, enables
quasi-static stress correction without exciting much Tg.

With an ambient temperature Ta, the Tg relaxes as
∂tTg = rT (Tg −ηTa), with η ≡ 1/(1−u2

s/u2
c), see eq. (26).

This means, the values Tg and vs respectively relax to,
ηTa and ηva, get strongly amplified close to us = uc. This
is a large effect.

3.4.2 Stability above the critical shear stress

From the consideration of the last two sections we see that
a granular assembly is, for an elevated Tg, mechanically
stable only up to the critical value for the elastic stress πc.
For πs < πc, Tg grows, since rT is negative. (As we shall
see in sect. 3.6, shear bands are formed as a result of this
instability.) On the other hand, for Tg = 0, the system is
stable at any static shear stresses exceeding πc, as long as
eq. (52) is not breached. Now, since an infinitesimal Tg is
ubiquitous, and if it always grows, there is no stability for
static shear stresses exceeding πc. It does not always grow:
Only an initial Tg of hypoplastic strength will explode,
not an infinitesimal one, of quasi-elastic strength. This
is because h diverges for Tg → 0, and the critical stress
diverges with h: Since f ∝ 1/h, we have uc ∝ h, Δc ∝
h2, and σc ∝ h2, see eqs. (31). Therefore, rT is always
positive for very small Tg. In fact, what we have for strain
values above uc is a metastability, a stability that may be
destroyed only by granular jiggling of sufficient strength.
This fact is associated with familiar phenomena: A house
on a cliff collapsing due to elastic waves from a distant
earth quake, or a pneumatic hammer close by; a gun shot
initiating an avalanche.

The elastic strain instability for us > uc holds only
for stress-controlled experiments, not rate-controlled ones,
though this distinction is not always clear-cut in experi-
ments. For instance, if a step motor is used for a strain-
controlled experiment, and one has a strain versus time
curve such as given by fig. 8 below, than the stress is
being hold constant at the plateaus, rendering the stabil-
ity of the uniform system precarious. This may well be
the reason why shear band formation is so frequently ob-
served in the cases where the initial density is high and
the non-monotonic stress trajectory exceeds uc, see fig. 1.

Finally, we stress that these aspects of granular behav-
ior are natural results of GSH, not preconceived features
planted in while constructing it. They stem from the in-
terplay between yield and the critical state, or more pre-
cisely, between the instability of the elastic energy and the
stationary solution of the elastic strain.



Eur. Phys. J. E (2015) 38: 15 Page 15 of 27

3.4.3 Angle of stability and angle of repose

Aranson and Tsimring were the first to construct a theory
for these two angles [87, 88]. Taking the stress σij as the
sum of two parts, one solid, the other fluid-like, they define
an order parameter �̂ that is 1 for solid, and 0 for dense
flow. They then postulate a free energy f(�̂) such that it
is stable with �̂ = 1 only for ϕ < ϕst, with �̂ = 0 only
for ϕ > ϕre, and ϕst > ϕ > ϕre as the bi-stable region.
The solid stress is taken as an input, assumed understood
from some other theory. In comparison, the consideration
below, given within the context of GSH, is somewhat more
complete and less ad hoc.

Fluidization, the collapse that occurs when one slowly
tilts a plate supporting a layer of grains, is a process that
happens at Tg = 0, with no granular jiggling. Therefore,
the Cauchy stress is given by the elastic one, σij = πij . On
a plane inclined by the angle ϕ, with y denoting the depth
of the granular layer on the plane, and x along the slope,
we take the stress to be πxx, πyy, πzz = PΔ, πxy = πs/

√
2,

πyz, πxz = 0. Integrating ∇jπij = giρ assuming a vari-
ation only along y, we find πxy = g sinϕ

∫
ρ(y)dy and

πyy = πxy/ tan ϕ. The angle of stability ϕst is reached
when the energetic instability of eqs. (12) is breached.
With πyield

s ≡ P
√

2A/B denoting the yield shear stress,
it is

tan ϕst = πyield
s /

√
2P =

√
A/B. (52)

Effects derived from proximity to the wall or floor are
considered in sect. 3.7.

The angle of repose ϕre is related to the calculation of
the last two sections. As long as the shear stress is held be-
low the critical one, σs < σc, the Tg-relaxation will run its
course, and the system is in a static, mechanically stable
state afterwards. At σs = σc, however, the system becomes
critical, and no longer comes to a standstill. Therefore, ϕre

is given by σc,

tan ϕre = σc/
√

2 Pc, with ϕre < ϕst. (53)

The inequality holds because the critical state is an elastic
solution, while ϕst is the angle at which all elastic solu-
tions become unstable. That ϕre and ϕst, material param-
eters, differ only slightly, is related to the microscopic fact
that both account for the clearance with the profile of the
underlying layer —though one with granular jiggling and
hence a little easier.

3.5 The visco-elastic behavior of granular media

All visco-elastic systems (such as polymer solutions) have
a characteristic time τ that separates two frequency
ranges: fluid-like behavior for ωτ � 1, and solid-like one
for ωτ � 1. Like granular media, polymers are tran-
siently elastic, though the transiency is constant and not
variable, because τ is. The hydrodynamic theory of poly-
mers, with a very similar elastic strain uij that obeys the
equation ∂tu

∗
ij − v∗

ij = −u∗
ij/τve, is capable of account-

ing for many visco-elastic phenomena, including shear-
thinning/thickening, elongational viscosity, the Cox-Merz
rule, and the rod-climbing (or Weißenberg) effect [44–47].

The main difference of the granular analogue, eq. (15),
is the fact that the relaxation time varies as τ ∝ 1/Tg —a
granular system is fully elastic for Tg → 0, capable of sus-
taining a static shear stress. Moreover, rate-independence,
a granular characteristics not observed in viscous elas-
tic systems with a constant τ , stems from the relation
1/τ = λTg ∝ vs. However, when there is an ambient tem-
perature in granular media, much larger than the tempera-
ture produced by the imposed shear rate, Ta � Tc ≡ f |vs|,
polymers and granular media are very similar in their be-
havior, because Ta is also a given quantity that does not
depend on the local shear rate. The ambient temperature
Ta may be maintained by a standing sound wave, periodic
tapping, or by diffusion from a region of great granular
agitation. In all cases, the resultant Ta enables the relax-
ation of the elastic strain and stress, implying no static
stress may be maintained, and the yield stress vanishes.

3.5.1 The creep motion

In granular media, one frequently observes shear bands,
which borders on a non-shearing, solid part. Careful ex-
periments reveal that the shear rate is in fact continuous,
with an exponentially decaying creep motion taking place
in the solid, see Komatsu et al. [89], Crassous et al. [90].
We show here that this is a result of Tg from the fluid
region diffusing into the solid one, being present there as
an ambient, spatially decaying temperature Ta that en-
ables stress relaxation. If the stress is to be maintained,
there must be a compensating shear rate that also decays
in space, along with Ta, and the velocity obtained from
integrating the shear rate is the observed creep motion.

Consider a “liquid-solid boundary” at x = 0, with the
shear rate being concentrated on one side, for x > 0. (We
shall return to consider the liquid side in sect. 4.2. Here,
we only take the fluid values at x = 0 to provide the
boundary conditions for vs, Tg in the solid part.) For a
one-dimensional geometry, the pressure P , shear stress σs,
the shear rate vs and Tg are uniform, but ρ need not be.
We take ρ to be discontinuous at x = 0, but constant
otherwise, with v�� = 0, and Tg, v varying perpendicular to
the boundary, along x̂. The circumstances are then quite
similar to that of sect. 3.4, though variation is in space
rather than time. First, with stationarity of eqs. (28), (30)
(see also eq. (51)), we have

Δ

Δc
=

u2
s

u2
c

=
T 2

c

T 2
g

=
πs

πc
=

σs

σc
,

Δ

us
=

Δc

uc

Tc

Tg
. (54)

With Δ, us fixed, so are P , σs, where especially P =
Pc if σs = σc. Note also that since the stable branch of
P/σs = PΔ/πs ≡ 1/μ increases monotonically with Δ/us,
see eq. (9), the last equation above implies that the friction
μ decreases for increasing Tc/Tg. The balance equation for
Tg (with ∂tTg = 0 but including the diffusive current, see
eqs. (26), (46)) reads

∇2Tg = Tg/ξ2
cr, ξ2

cr ≡ ξ2
T /[1 − πs/πc], (55)

implying vs/v0
s = Tg/T 0

g = exp(−x/ξcr), (56)
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where v0
s , T 0

g are the fluid values at x = 0. That the decay
length ξcr ≡ ξT /

√
1 − σs/σc diverges for σs = σc is not

surprising, because the solid region, turning critical, ceases
to exist then. Although subcritical, σs < σc, the solid
region sustains a finite rate vs 	= 0, because Tg is being
continually diffused from the fluid region. Note σs is a
uniform quantity across the boundary, yet we necessarily
have σs < σc(ρ) on the solid side, σs ≥ σc(ρ) on the
fluid side, implying a lower fluid density. Finally, the above
exponential decay with the constant length ξcr holds only
in the hypoplastic regime. Once Tg is sufficiently small,
we have h → ∞, and ξT ∝ h−1 vanishing quickly.

In two recent papers [91, 92], Kamrin et al. propose
a non-local constitutive relation (KCR) well capable of
accounting for steady flows in the split-bottom cell [93–
95]. A key ingredient is the fluidity g ≡ vs/μ. With μ ≡
σs/P , μs ≡ σc/Pc, it is taken to obey

ξ2
cr∇2g = g − gloc, ξcr ∝ 1/

√
|μ − μs|. (57)

Because gloc = 0 for μ < μs, this relations is rather similar
to eq. (55), with g assuming the role of Tg, and the two
decay lengths diverging at the same stress values.

For μ ≥ μs, the system is fluid, and g = gloc essen-
tially constant. With gloc ∝

√
P (1 − μs/μ), KCR is con-

sistent with a first-order expansion of the MiDi relation,
eq. (68), in the inertial number. GSH is compared to MiDi
in sect. 4, showing broad agreement and some relevant
disagreements. Here, we only discuss the additional differ-
ences of GSH to KCR.

First, KCR does not take the density as a variable,
leading to inconsistencies: The stress is continuous at
the solid-fluid interface and strictly constant in a one-
dimensional geometry. As discussed below eq. (56), we
necessarily have σs < σc(ρ) on the solid side, σs ≥ σc(ρ)
on the fluid side, implying a lower fluid density. Without
the density, the same two conditions imply a discontinu-
ity in σs or μs which violates momentum conservation.
Another drawback is the fact that granular behavior de-
pends sensitively on whether density or pressure is being
held constant see sect. 3.1.3 above and 4.1 below. This
cannot be reproduced employing KCR. Second, being de-
fined as vs/μ, the fluidity g is not an independent vari-
able like Tg, though it does possess a postulated, indepen-
dent dynamics. If one eliminates g, rewrites its equation as
μξ2

cr∇2(vs/μ) = vs − vloc
s , a problem arises: This equation

(in conjunction with v�� = 0) and the momentum con-
servation may both be used to calculate the velocity field
for given density and stress. The results will in general be
contradictory.

3.5.2 Non-local fluidization

Non-local fluidization is an observation made (and named)
by Nichol et al. [96], see also Reddy et al. [97]. In a vessel
of grains, after a shear band is turned on, the medium
everywhere, even further away from the band, looses its
yield stress, and the Archimedes law holds: A ball stuck
at whatever height without the shear band starts to sink

or elevate, until its density is equal to the surrounding
one. GSH’s explanation for this behavior is quite simple:
First, Tg generated by the shear band diffuses through the
solid phase, as accounted for by eq. (55), permeating the
medium as a spatially decaying ambient temperature Ta.
Second, a medium such “fluidized” obeys, as observed ear-
lier [98, 99], the Archimedes law, because the ball getting
stuck in the sand deforms the grains around itself and
builds up an elastic shear stress. Without an ambient tem-
perature, Ta = 0, this stress holds up the ball’s weight if
it is not too large, and the ball is stationary. With Ta 	= 0,
the stress relaxes, requiring a compensating shear rate vs

to maintain the stress balance, implying a moving ball. We
note that Ta 	= 0 does not imply the grains need to jiggle
violently. If the ball’s descent takes an hour, a barely per-
ceptible slip every minute would be quite sufficient. And
Ta is the spacial and temporal average of the changing
energy contained in these slips.

More quantitatively, a solid object being dragged
by a constant force F ext

i through a granular medium
will quickly settle into a motion of constant velocity
v∞, implying a stationary stress and velocity distribu-
tion in the medium, in the rest frame of the object. So
eqs. (51) holds. This is remarkable, because the elas-
tic stress πij(Δ,us) transforms, under the replacement
Δ,us → Tc ≡ f |vs|, v��, into a viscous stress. And this en-
ables one to perform a calculation similar to that needed
to arrive at Stokes’ law.

Stokes’ law F drag
i = 6πRηv is derived assuming an

incompressible (and infinitely extended) medium, with
v�� = 0. The resulting velocity field, scaling with v∞,
is a pure geometric quantity that does not depend on
any parameters, especially not the applied force Fext [8].
In contrast, granular media possess sound velocities one
to three times that of air and are rather compressible.
As a result, both the velocity field and all parameters
(that are functions of the density) will depend on Fext.
In fact, that the viscosity seemingly depends on the mass
of the steel ball (∝ the gravitational force) was observed
in [96]. Inserting eqs. (51) into eq. (6), we have, with
σij = (1 − α)(PΔδij + πsv

∗
ij/vs),

PΔ =
Au2

c

2
√

Δc

Tc

Tg
, πs = −2Auc

√
Δc

T 2
c

T 2
g

, (58)

where PΔ contains only the of lowest order term in vs,
v��, while πs is valid assuming v�� = 0 (and appropriate
for the steel plate below). Note Tg =

√
T 2

c + T 2
a has two

contributions, Ta from the remote shear band, and Tc ≡
f |vs| from the non-uniform local shear rate. For Ta = 0,
PΔ and πs are rate-independent, and the system is in a
(non-uniform) critical state. For Ta � Tc, the system is
viscous, and one may define two effective viscosities, P =
ηeff
1 vs, σs = −ηeff

2 v2
s , with ηeff

1 ∝ 1/Tg, ηeff
2 ∝ 1/T 2

g .
In [98], faster ascent and a smaller viscosity were observed
in regions of larger granular agitation (and attributed to
“pressure screening”).

Given the form for the stress, one can calculate the
velocity field depending on the geometry of the object.
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The drag force is then obtained by inserting the field
into σij , and integrating it over the surface of the ob-
ject, F drag

i =
∮

σijdaj . The simplest case is that of a
steel plate, say perpendicular to x̂ and being dragged
along ŷ. The shear rate is a constant, vs = 1

2∇xvy, with
v�� = 0, and the force F drag per unit surface of the
plate is 2σxy ∝ v2

s/T 2
a . The velocity field for a ball of

radius R is not as easily calculated, though it is clear
that, for Tc/Ta small, the drag force stems from the
pressure and is linear (and not quadratic as with the
plate): F drag

i =
∮

Pdai ∝ vs/Tg ∝ v∞/Tg, as observed
in [99]. Assuming incompressibility (as one does deriving
the Stokes’ law though inappropriately here), one finds
F drag

i =
∮

Pdai = (9π2/16)(Au2
cf/

√
2Δc) (Rv∞/Ta).

Any hydrodynamic theory starts from the basic as-
sumption that its resolution is small compared to the sys-
tem size, but much larger than any microscopic lengths —
in the present case, especially the grain diameter d. In [97],
the diameter of the probing rod, a system size, is only 2d.
Although averaging over time and runs usually retrieves
the macroscopic behavior, this may not work quantita-
tively when the two scales are essentially the same.

Summarizing, the dichotomy of the elastic stress and
a Tg-dependent viscosity is the basic GSH-explanation
for granular visco-elasticity. In this more general picture,
creep motion may equally well be understood as the vis-
cous motion under constant moment of inertia.

3.6 Narrow shear bands

Typical constitutive models such as hypoplasticicty or
barodesy do not properly account for shear bands, and
the reason is the lack of a length scale. There are various
approaches to overcome this shortcoming, by introducing
gradient terms [100] or adding state variables to account
for the couple stress and the Crosserat rotation [101]. Es-
pecially the Crosserat method works well, but it leads to a
far more complex theory, constructed for the sole purpose
of solving the shear band problem. Moreover, it throws up
the question about the underlying physics: If couple stress
and rotational motion are important in the shear band,
because it is fluid, why then are they not important in the
uniformly fluid and gaseous state of granular media, see
sect. 4, or more generally, in nematic liquid crystals [10]?

The purpose of this section is to point out that GSH
is well capable of accounting for the shear band without
any modification. We consider a system of uniform density
and stress, with all variables stationary, such that eqs. (54)
hold. The balance equation (46) for Tg, accounting for Tg’s
relaxation to 0 if πs < πc, implies Tg ≡ 0 is the uniform
stationary solution, see sect. 3.4.1. For πs = πc, the system
is in the critical state, Tg does not relax and the strain
rate is indeterminate. For πs > πc, no uniform solution is
stable, but a localized one is, with Tg ≡ 0 for x ≤ 0 or
x ≥ ξsb, and

∇2Tg = −Tg/ξ2
sb, ξ2

sb ≡ ξ2
T /[πs/πc − 1],

vs/v0
s = Tg/T 0

g = sin(πx/ξsb) (59)

in between. (Note the similarity to eq. (55). Allowing
ρ to vary will render Tg differentiable at 0, ξsb.) The
velocity difference from 0 to ξsb is Δv =

∫
vsdx =∫

(Tg/f)
√

πs/πcdx, hence

T 0
g /f =

√
πc/πs v0

s =
√

πc/πs Δv π/(2ξsb). (60)

The critical state and the narrow shear band are the same
rate-independent solution, behaving differently depend-
ing on how large πs is. That the correlation length ξsb

diverges for πs = πc gives a retrospective justification
of the term critical. For increasing Δv, the variables vs,
us, Δ/us also grow, and the system will eventually leave
the rate-independent, hypoplastic regime. Shear bands be-
come wider then, and have to be treated as in sect. 4.2.

The above is an idealized and simplified considera-
tion of narrow shear bands, assuming uniform density
and stress, and employing GSH expressions that have
been linearized and simplified. (Neither did we invoke the
higher order strains terms of sect. 3.7, implying in essence
ξsb � θ, θ1.) The qualitative and structurally stable part
of the results is a localized shear band solution of GSH, for
overcritical stress values, with a characteristic length that
decreases with increasing πs. When approaching the crit-
ical state non-monotonically, starting from a dense initial
state, with πs > πc for part of the path, there is a high
probability for the Tg-instability discussed in sect. 3.4.2 to
occur and shear bands to form.

Details such as the spacial distribution of Tg(x) ∝ vs,
or that the friction angle σs/P = πs/PΔ decreases with
increasing Tc/Tg ∝ Δus, however, should be taken with
a grain of salt, as these depend on the details and may
change with the starting assumptions and GSH expres-
sions. For instance, the original Tg equation and the asso-
ciated solution are

∇i(Tg∇iTg)=−T 2
g /ξ2

cb, Tg =T0

√
sin(

√
2 x/ξsb), (61)

see the discussion preceding eq. (25), leading to the neglect
of the non-linear term (∇iTg)2, small for slow variations,
in both eqs. (25) and (59). Same holds for eq. (55). Finally,
if the density is non-uniform, say due to an aggregation
of macropores, we will have πs > πc(ρ) only in some re-
gions. Tg will be larger there, diffusing away, making the
situation less clear-cut.

3.7 Clogging and the proximity effect

The phenomenon of clogging implies that a free surface, if
several grain diameter wide, may be stable even when fac-
ing downward, implying an angle of stability of 180◦, much
larger than than the usual 30◦ or 40◦, as discussed around
eqs. (52), valid only if the surface area is sufficiently large.
Although GSH in its present form, as given in sect. 2,
does not account for clogging, there is a tried and proven
method of amending it. One example is the Ginzburg-
Landau description of the superfluid transition [9], which
includes gradients of the order parameter’s magnitude in
the energy. In the present case, we need to include gradi-
ents of the elastic strain that express the extra energetic
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cost of a non-uniform strain field. Without these terms,
unclogging occurs accompanied by a discontinuity in Δ,
us. With them, divergent gradients are forbidden by the
infinite energy. A length scale on which elastic strains will
change is thus introduced. With wΔ = wΔ(uij ,∇kuij),
−πij ≡ ∂wΔ/∂uij , φijk ≡ ∂wΔ/∂∇kuij , the elastic and
total stress are, respectively

π̂i ≡ πij + ∇kφijk, σij = [1 − α(Tg)]π̂i. (62)

Denoting the two characteristic lengths as θ, θ1, a simple
example for such an energy is

wΔ =
√

Δ[2BΔ2/5 + Au2
s] + A(θ∇kus)2 + B(θ1∇kΔ)2,

(63)
implying

P̂ = P − 2Bθ2
1∇2

kΔ, π̂s = πs + 2Aθ2∇2
kus, (64)

with P , πs the uniform contributions, assuming u∗
ij/|us| =

const. Note that with this energy, the convexity transi-
tion, us/Δ ≤

√
2B/A of eq. (12) is unchanged (though

πs/PΔ ≤
√

2A/B does change), because with w = w1(a)+
w2(∇a) and

δ2w = δ(δw) = δ

(
∂w

∂a
−∇ ∂w

∂∇a

)
δa

= δ

(
∂w1

∂a
−∇ ∂w2

∂∇a

)
δa

=
(

∂2w1

∂a2
δa −∇ ∂2w2

∂(∇a)2
δ∇a

)
δa

=
(

∂2w1

∂a2
+

1
2
∇2 ∂2w2

∂(∇a)2

)
(δa)2,

a standing for Δ or us, we have δ2w/δa2 = ∂2w1/∂a2.
(Note

∫
∇[∂2w2/∂(∇a)2]δ∇aδa = −

∫
∇2[∂2w2/∂(∇a)2]

δa2−
∫
∇[∂2w2/∂(∇a)2]δaδ∇a if the surface integral van-

ishes.)
We employ this result and the model energy eq. (63) to

consider, qualitatively, clogging and the proximity effect.
More quantitative treatment will be provided in a separate
work. First the effect that the angle of stability ϕst is, for
a few layers of grains, much larger than given in eq. (52).
Simpler, that πs/PΔ can be larger than

√
2A/B in a one-

dimensional, simple shear geometry of the width L. We
consider the strain fields for −L < y < L: Δ = Δ0, us =
u0 + αy2/3L2 (i.e. displasement Ux = u0y + αy3/12L2),
with Δ0, u0 = const, u0/Δ0 ≤

√
2B/A, and α � u0

such that the direct contribution to πs is negligible. Then
P̂ = P , π̂s = πs + Aαθ2/L2, and the uniform correction
is considerable for θ � L. The fact that crushing is most
efficient when the shearing walls are only a few grain di-
ameters apart is clearly related to the above consideration
that elastic solutions remains stable at large πs. The grains
remain static until they are crushed in narrow geometries,
while transitioning into sliding, rotating, critical states in
wider ones.

Next, a crude model for clogging. Since the stress van-
ishes for any free surfaces, we examine the 1D-situation in
which it is zero for −L < x < L, but finite at x = ±L and
beyond. Taking P̂Δ, π̂s = 0 as the differential equations,
we solve them for −L < x < L subject to the bound-
ary conditions Δ = Δ0, us = u0 for x = ±L. Assuming
for simplicity that θ1 � L, we take Δ ≡ Δ0, implying
(1 − θ̄2∇2

k)us = 0 with θ̄ = θ/ 4
√

Δ0, or

us(x)
u0

[
1 + exp

(
2L

−θ̄

)]
= exp

[
x + L

−θ̄

]
+ exp

[
x − L

θ̄

]
.

(65)
If u0 satisfies the stability condition, u0/Δ0 ≤

√
2B/A,

the solution us(x) also does, and therefore represents a
stable elastic situation.

4 Rapid dense flow

4.1 The μ-rheology versus GSH

When considering hypoplastic motion in the last section 3,
we neglected the kinetic pressure PT and the viscous shear
stress ∝ ηg, see eqs. (17)–(19). Here, we consider faster
flows in which they are important, some times even domi-
nant. Including them, we are leaving the rate-independent,
hypoplastic regime. Being quadratic in the shear rate, the
correction come on slowly, leaving a large rate regime in
which rate-independence holds.

How the stress of a system, in it stationary state, de-
pends on the density ρ and shear rate vs, is called its
rheology. Probing it over a wide range of shear rates is
a useful inquiry for coming to terms with complex flu-
ids including granular media. Granular rheology has many
facets, and typically, the shear rate vs is given. If it is low,
the system executes complex elasto-plastic motion with a
rate-independent stress, converging onto the critical state
at constant rates, with a universal shear stress σc that
depends only on the density, not the rate or the initial
stress, as considered in sect. 3. If vs is high and the den-
sity sufficiently low, the system is in the Bagnold regime,
with all components of the stress proportional to shear
rate squared [102]. We consider the whole regime below.
If the shear stress is given instead of vs, circumstances are
yet different. Examples are flows on an inclined plane or
in a rotating drum, with a delay between jamming (angle
of repose ϕre) and liquefaction (angle of stability ϕst), see
sect. 3.4.3. Part of the results of this section is in [103].

4.1.1 The μ-rheology

Sixty years ago, Bagnold examined how a granular sys-
tem behaves at high rates and low densities, finding the
pressure P and shear stress σs given as

P = ep(ρ)v2
s , σs = es(ρ)v2

s , (66)

with μ2 ≡ σs/P = es/ep a constant [102]. This result
has been variously verified employing the kinetic theory
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to consider binary collisions among rarefied, dissipative
grains [104–108].

A decade later, granular rheology at low rates and high
densities was studied. Again, a surprisingly universal so-
called critical state was observed [1–3, 6]. Starting from
any initial stress, the system will, at constant densities
and shear rates, acquire values for the pressure and shear
stress that depend on ρ but not the rate, with the friction
μ1 ≡ σc

s/P c = const.
Faced with these results, many find it plausible to

account for the intermediate behavior by interpolating
between the two rate- and density-independent plateaus
[109–112],

P = P c + ep(ρ)v2
s , σs = μ1P

c + μ2epv
2
s , μ ≡ σs/P,

(67)
implying μ → μ1 for vs → 0 and μ → μ2 for vs → ∞.

Embarking on an approach independent from the
above and stressing first principles, the French research
group GDR MiDi consider infinitely rigid grains [70,113],
and point out that its rheology has only three independent
numbers: the friction μ, the packing fraction φ ≡ ρ/ρg

and the inertial number I ≡ d
√

ρg(vs/
√

P ), with ρg the
bulk density, d the granular diameter. Taking two as func-
tions of the third, μ = μ(I), φ = φ(I), Forterre and
Pouliquen [114] take granular rheology to be accounted
for by

μ = μ1 + (μ2 − μ1)I/(I + I0), (68)

with μ1 ≈
√

2 tan 21◦, μ2 ≈
√

2 tan 33◦, I0 ≈ 0.3. Contain-
ing two plateaus, same as eqs. (67), this formula is shown
capable of accommodating many experiments and simu-
lations, and has recently also been successfully applied to
dense suspensions [115].

However, there is a fundamental problem. The rela-
tions μ = μ(I), φ = φ(I) are (irrespective of their func-
tional dependences) equivalent to eqs. (66), implying P c,
σc

s = 0: First, φ = f(I) is clearly equivalent to P =
v2

s/f−1(φ); second, μ(I) = μ[f−1(φ)] is a function of φ
alone, and the two plateaus are for large and small pack-
ing fractions, respectively, implying P , σs ∝ v2

s . However,
this contradicts half a century worth of research in soil me-
chanics, unambiguously showing rate-independent stresses
for elasto-plastic motion, vs → 0.

The validity of eqs. (66) for infinitely rigid grains has
been rigorously proven by Lois et al. [116], for any rates
and densities, not only where the kinetic theory holds.
Yet the speed of elastic waves in glass beads is between
350 and 800m/s [66], which in comparison to air, water,
bulk glass (with velocities of 300, 1500, 4000m/s, respec-
tively) indicates a very soft medium. The difference be-
tween glass beads and bulk glass stems from the geometry
of the Hertz contact. When considering binary collisions,
assuming infinitely rigid grains reduces the collision time
to zero, but does not change the physics qualitatively. As-
suming incompressibility in dense media eliminates elastic
waves and the critical state.

When arguing that one may treat grains as infinitely
rigid, the authors of [116], citing a paper by Camp-
bell [117], assert that as long as M ≡ dvs/cs (with cs the

sound velocity) is small (typically for vs � 103/s), grains
behave as if they were perfectly stiff. This is oddly re-
versed, because quasi-static deformations occur at small
rates, and are disrupted at higher ones. Indeed, perus-
ing [117], one finds Campbell stating clearly: 1) It is the
inertially induced contact deformation that vanishes with
M . 2) Stresses are generated by elastic deformations in
the rate-independent, “elastic-quasi-static” regime.

4.1.2 The dense flow results of GSH

Treating dense granular media as compressible, GSH
shows the appropriateness of eqs. (67). Starting from
eqs. (17), (18), we substitute the elastic contributions with
the critical state expressions, eqs. (33), appropriate for
constant shear rates, while noting PT = gpT

2
g = gpf

2v2
s ≡

epv
2
s , see eq. (11), (27), also η1Tgvs = η1fv2

s ≡ esv
2
s , to

obtain
P = Pc + epv

2
s , σs = σc + esv

2
s . (69)

The observed density-independence of μ1, μ2 implies the
constancy of Pc(ρ)/σc(ρ) = μ1 and es(ρ)/ep(ρ) = μ2, an
experimental input. (A viscous stress linear in vs, as ob-
served in [117] at high densities, has not been included
above but is a possibility, see [48,49]. It appears if a macro-
scopic shear flow not only heats up Tg, but T as well. This
is the case for instance when the sand is saturated with
water. The pressure P would receive a term liner in Tg if
one modify the energy, w = wT + wΔ + wx, by adding a
cross term such as wx = csgΔ

1.5. The total pressure P

and Tg then obtain the respective additive term, csg

√
Δ

and cΔ1.5, implying that the linear term ∝ Tg exists only
for ρ > ρ�p and Δ 	= 0.)

If the density is low, ρ < ρ�p, the grains lack endur-
ing contacts and no elastic solution is stable, PΔ, πs = 0,
see eq. (13). Then eqs. (66) are the appropriate formulas.
When studying granular rheology by varying the shear
rate vs, one can either keep the density or the pressure con-
stant. For any realistic shear rates, we have P c � ep(ρ)v2

s ,
σc

s � es(ρ)v2
s , and it is hard to arrive at the μ2-limit for

given ρ. Not so for given pressure, because the density de-
creases for increasing vs. A discontinuous transition from
eqs. (67) to (66) takes place at ρ = ρ�p, when μ jumps from
μ1 to μ2, while P , σs decrease dramatically, by around
three orders of magnitude [117].

Two important points remain to be discussed, first
when and why there is, as observed [118, 119], a mini-
mum in the shear stress as a function of the rate; and
second, why the MiDi relation is, in spite of its shortcom-
ings, so successful. Keeping the density constant, P c(ρ),
σc

s(ρ), ep(ρ), es(ρ) also are, implying P , σs increase mono-
tonically with v2

s . Keeping P = const, the circumstances,
though still given by eqs. (67), are different. In the hy-
poplastic regime, the shear stress at given pressure, σc

s =
μ1P , is simply a constant, similarly in the Bagnold regime,
σs = μ2P . In between, both ρ, σs are rate- and density-
dependent, given by σs = μ1P

c(ρ) + μ2ep(ρ)v2
s , with

ρ(P, vs) from P = P c(ρ)+ ep(ρ)v2
s plugged in. Then there

is no reason for σs(P, vs) to be monotonic, see [81] for
more details.
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Equations (67) are algebraic relations that hold for
uniform systems. To account for non-uniform ones, gra-
dient terms from GSH become important, and the large
set of non-linear, partial differential equations that GSH
is needs to be solved. Even disregarding this, there are
still complications that one needs to heed. For instance,
enforcing a constant total volume does not prevent the
local density to vary, and a stress dip may still occur.

To understand this better, consider two uniform vol-
umes V1, V2, with V1 + V2 = const. Being in contact via a
flexible membrane, they may serve as a simple model for
the continuous non-uniformity of a constant volume ex-
periment. Initially, the total system is uniform, with both
densities equal, ρ1 = ρ2, and both shear rates vanishing,
γ̇1, γ̇2 = 0. Now, if γ̇2 is cranked up, but γ̇1 remains zero,
because of pressure equality, P1(ρ1, γ̇1) = P2(ρ2, γ̇2), the
density must change and the membrane will stretch, with
ρ2 decreasing and ρ1 increasing. If system 1 is much larger
than 2, the stretching of the membrane will not change ρ1

much, and P1(ρ1, γ̇1) will remain essentially constant as a
result. So will P2 = P1, and the pressure-controlled limit
holds in system 2. Otherwise, we have an intermediate
case between the pressure- and density-controlled limits.
In both cases, a stress dip may appear.

Finally, we give three reasons for the undeniable suc-
cess of the MiDi relation: First, φ = φ(I) is correct for
ρ < ρ�p, while μ = μ(I) as given by eq. (68) is right
for ρ > ρ�p. Very few papers span both limits and em-
ploy both relations simultaneously. Second, many exper-
iments are non-uniform, lying between the density- and
pressure-controlled limits. An unreflective comparison of
the relation to a subset of data such as the average den-
sity or stress is then neither accurate nor discriminating.
In fact, by employing eqs. (66), (67), Berzi et al. [112]
were able to achieve quantitative agreement with both
the simulation on simple shear in [120] and the experi-
ment on incline flows in [121]. Both were deemed strong
support for the MiDi relation. Third, the frequently ob-
served collapse of different curves, when μ is plotted as a
function of I, may be understood because μ depends on
Î ≡ ep(ρ)v2

s/P alone, and Î is close to I2. (One writes
μ = (σc/P )(P − epv

2
s)/Pc + esv

2
s/P = μ1(1 − epv

2
s/P ) +

μ2ep/P = μ1 + (μ2 − μ1)Î. Generally speaking, granular
rheology is given by P, σs = f(ρ, vs). One may switch to
ρ, φ = f(P, vs) or μ, φ = f(I, vs), two variables remain
and there is no collapse. μ = f(Î), Î

vs→∞−−−−→ 1 is an excep-
tion.) Note that depending on whether ρ or P is being held
constant, one must take, respectively, Î = ep(P, v2

s)v2
s/P

and Î = ep(ρ)v2
s/P (ρ, v2

s).

4.2 Wide shear bands

The narrow shear band has already been considered in
sect. 3.6. Here, we consider a wide shear band, which is
in essence the coexistence of static granular solid and uni-
form dense flow. In the first, the grains are deformed and
at rest, Tg = 0, with all energy being elastic. In the sec-
ond, the grains jiggle, rattle, move macroscopic distances,

with Tg ∝ vs and a portion of the energy in Tg. Increasing
the shear rate, the transition from the rate-independent
critical state to the Bagnold regime of dense flow is, as
discussed in sect. 4.1, continuous at given density and dis-
continuous at given pressure, but always uniform. Here,
we consider a non-uniform path, a narrow shear band
that suddenly appears, as the result of an instability, see
sect. 3.6, then continuously widens as the externally ap-
plied velocity difference increases, until the band covers
the whole system, and uniformity is restored.

Approaching the critical state with a high initial den-
sity, the evolution of the shear stress σs is non-monotonic,
assuming overcritical values part of the path. This is where
the system has a high probability of breaching an insta-
bility, either of the elastic energy at a point on the yield
surface, as discussed around eq. (12), or that of Tg, as dis-
cussed in sect. 3.4.2. The transition is difficult to account
for, but the stable shear band is again simple.

As we have seen, the narrow shear band of low shearing
velocity v has a rate-independent width. If v is higher, the
system’s behavior depends on the setup. For given pres-
sure, the width � grows linearly with v, implying a con-
stant rate v/� in the liquid phase. As a result, the shear
stress, a function of the rate, remains independent of v.
This faux rate-independence goes on until the band cov-
ers the whole system, at which point the quadratic rate
dependence of uniform dense flow sets in. For given vol-
ume, the band width remains independent of v, but the
shear stress grows quadratically with it. The transition to
uniform dense flow is for given volume discontinuous. It
happens when the shear stress exceeds the critical value
of the solid density, at which point the solid phase is no
longer stable.

To understand wide shear bands, we study the sim-
ple case of uniform fluid and solid regions connected via
a flat surface. (Separately, they are already understood.)
Denoting the solid and fluid parts with the superscripts S

and F , respectively, these two regions have equal pressure,
shear stress, and chemical potential,

PS = PF , σS
s = σF

s , μS = μF . (70)

(The chemical potential is defined as μ ≡ ∂w/∂ρ, see
eq. (1). The equality holds because otherwise a particle
current would flow across the phase boundary.) All three
fields have an elastic and a seismic contribution: With
P = (1 − α)PΔ + PT , σs = (1 − α)πs + η1Tgvs, see
eqs. (17), (18), and μ = μΔ + μT , where

μT ≡ T 2
g

b0ρ

2

[
1 − ρ

ρcp

]a (1 + a)ρ − ρcp

ρcp − ρ
, (71)

μΔ ≡ 0.15wΔ(ρcp − ρ̄)/[(ρcp − ρ)(ρ − ρ̄)]. (72)

Denoting the width of the shear band as �, and the velocity
difference across the shear band as v, we take

in fluid: vs = v/� ∝ Tg, ΔF = Δc, uF
s = uc, (73)

in solid: α, Tg, vs = 0. (74)

In other words, the elastic strain Δ and us have critical
values in the F -phase, and appropriate static values in
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the S-phase. Strictly speaking, the discontinuities at the
S-F boundary are in ρ, Δ, us, but not in Tg and vs, as
both diffuse into the solid, decaying exponentially there,
see sect. 3.5.1. We neglect this detail, approximating the
decay with a discontinuity to keep the formulas simple,
and to work at the qualitative understanding first. The
price we pay is a slightly fuzzy � that includes the two
decay zones in the solid.

4.2.1 The fluid region

The elastic contribution μΔ is a very small quantity: In
PΔ ∝ BΔ1.5, a large B compensates a small Δ1.5, such
that PΔ is either much larger than, or comparable to,
PT ∝ T 2

g . Now, μT is of the order of PT /ρ, but μΔ ∝
BΔ2.5 ∝ ΔPΔ is smaller by the factor Δ, around 10−3–
10−4. Therefore, as long as PT � ΔPΔ, we have μT � μΔ,
and μS = μF reduces to μT = 0, implying the density in
the shear band is (in dry sand) fixed as

ρF = ρcp/(1 + a). (75)

Measuring ρF therefore yields the value of a, see eq. (11).
In what follows, we need to assume a sufficiently small a,
such that ρF > ρ�p. Because ΔF = Δc(ρF ), uF

s = uc(ρF ),
the elastic pressure PΔ(ρ,Δ, us) in the fluid is also known.

Given pressure. Next, we consider the case of given
velocity difference v across the shear band, and given ex-
ternal pressure, P ex = PS = PF ,

P = Pc(ρF ) +
T 2

g

2
(ρF )2 a b/ρcp

(1 − ρF /ρcp)
, (76)

σs = σc(ρF ) − η1Tg v/�. (77)

Since PF , ρF fix Tg, vs = Tg/f , and for given v, the
width of the shear band � = v/vs is also fixed, we have
all there is to know about the fluid region. Remarkably,
the system now displays a faux rate-independence: � ad-
justs itself such that Tg ∝ v/� remains constant for given
pressure, independent what v is. The parabola of fig. 7
depicts σs. The offset gives the elastic contributions, σc.
The horizontal line is a result of � adjusting.

Increasing the velocity v at given pressure alters the
width �, as long as it is smaller than the width of the
total system L. For larger velocities, the system is again
uniform, without a solid region. And the consideration
of sect. 4.1 holds. Until this point, the stress is rate-
independent, much longer than without a shear band.

Given the solid density ρS (see sect. 4.2.2), and the
mass per unit surface M , mass conservation ρS(L − �) +
ρF � = M determines the total width L for given pressure
P .

Given total volume. At given total volume L, because
of mass conservation and because ρS , ρF are given in addi-
tion to L, the band width � is fixed, irrespective what the
velocity v is. As a result, both the shear stress and pres-
sure grow as (v/�)2 ∝ v2, not at all rate-independent. The
transition to uniform dense flow happens discontinuously,
when eq. (79) is violated, for σc(ρS) = σS .

Fig. 7. Faux rate-independence: Shear stress σs as a func-
tion of the velocity difference v, or of the apparent shear rate
vs ≡ v/L, for given pressure, in a simple-shear geometry. The
offset gives the elastic contribution, σc(ρF ); the parabola is the
case without a shear band. The thick horizontal line depicts the
situation with a shear band, of width �, which is smaller to-
wards left, and equal to the system’s width L at the right end.
The rate-independence of σs derived from � adjusting itself
such that Tg ∝ v/� remains constant for given pressure.

4.2.2 The solid region

Because we have terms of such different magnitudes in
the connecting condition μS = μF , it fixes ρF instead
of giving a relation between ρF and ρS . Therefore, the
condition is always satisfied, irrespective what value ρS

assumes. So ρS can only be a result of the dynamics: When
an instability is breached, the density is changed until it
gets stuck at some value for ρS , at which the system is
again stable. Then of course, ΔS , uS

s may be determined
for given pressure and shear stress. Nevertheless, we do
know

ρF < ρS and ρF ≤ ρc(P ) (78)

must hold. The first inequality can be seen from

σc(ρS) > σS = σc(ρF ) + η1Tgvs ≥ σc(ρF ), (79)

where the first greater sign is related to the discussion in
sect. 3.4.2; the equal sign is a connecting condition; and
the second greater sign is a result of η1Tgvs being positive,
in addition to the fact that σc is a monotonically increas-
ing function of the density, cf. the discussion in sect. 3.1.1.
The second inequality, ρF ≤ ρc(P ), holds because of two
reasons: First, in the critical state, there is only one free
parameter. Once ρ is given, Δc, uc, Pc, σc also are. Alter-
natively, one may fix the external pressure P , then ρc(P )
is a dependent quantity. Second, given P = Pc(ρF ) + PT ,
we have ρF = ρc for PT = 0. ρF may be smaller, but
if it were larger, shear band will not exist, and the flow
is uniform. For ρF < ρ�p, there is no elastic contribu-
tion in the shear band, Pc, σc = 0 in eqs. (76), (77), and
eq. (78) holds trivially. All other conclusions remain valid,
also fig. 7, though without the offset σc.

When the velocity v decreases, the above consideration
stops to be valid at some point. For instance, ρF is no
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longer given if PT � ΔPΔ does not hold. But before this
happens, the narrow band solution should already have
taken over.

5 Velocity and damping of elastic waves

That elastic waves propagate in granular media [122,123]
is an important fact, because it is an unambiguous proof
that granular media possess an elastic regime. In this sec-
tion, we consider elastic waves and propose to employ
them as a tool to detect the elastic-to-plastic transition.
There is a widespread believe in the granular community
that small, quasi-static increments from any equilibrium
stress state is elastic, but large ones are plastic. As dis-
cussed in sect. 7, this assumption appears illogical, be-
cause any large increment can always be taken as the sum
of small ones. In GSH, the parameter that sets the bound-
ary between elastic and plastic regime is the granular tem-
perature Tg. We have quasi-elastic regime for vanishing
Tg ∝ v2

s , and the hypoplastic one for elevated Tg ∝ vs.
A perturbation in the elastic strain or stress propa-

gate as a wave only in the quasi-elastic regime, while it
diffuses in the hypoplastic one. More specifically, we de-
rive a telegraph equation from GSH, with a quantity ∝ Tg

taking on the role of the electric resistance [124]. It defines
a characteristic frequency ω0 = λTg, such that elastic per-
turbations of the frequency ω diffuse for ω � ω0, and
propagate for ω � ω0. We have ω0 → 0 in the quasi-elastic
regime, so all perturbations propagate. In the hypoplastic
regime, when Tg is elevated, so is ω0, pushing the prop-
agating range to ever higher frequencies. Eventually, the
associated wavelength become comparable to the granular
diameter, exceeding GSH’s range of validity.

To derive the telegraph equation, we start with two
basic equations of GSH, eqs. (15), (18),

ρ∂tvi − (1 − α)∇mKimklu
∗
kl = 0, (80)

∂tu
∗
ij − (1 − α)v0

ij = −λTgu
∗
ij , (81)

with Kimkl ≡ ∂2w/∂uim∂ukl. (For simplicity, we concen-
trate on shear waves, assuming v�� ≡ 0.) For Tg → 0,
the plastic terms λTgu

∗
ij and α ∝ Tg are negligibly small,

and these two equations represent conventional elasticity
theory. The wave velocity c (given by the eigenvalues of
Kimnjqmqn/(ρq2) with qm the wave vector), as a func-
tion of stress and density, is then easily calculated. The
results [54] agree well with observations [66].

There are two ways to crank up Tg and the plasticity,
either by introducing external perturbations Ta, or by in-
creasing the amplitude of the wave mode, because its own
shear rate also creates Tg. The characteristic time of Tg

is 1/RT � 10−3 s in dense media, see eq. (26). Therefore,
we assume that the wave mode’s frequency is much larger
than RT , such that Tg and α(Tg) are essentially constant,
or

2(∂2
t + λTg∂t)u∗

ij = (1 − α)2

×∇m[Kimkl∇ju
∗
kl + Kjmkl∇iu

∗
kl].
(82)

Concentrating on one wave mode along x, with cqs the
quasi-elastic, c ≡ (1 − α)cqs the actual velocity, and
ū ∝ eiqx−iωt the eigenvector’s amplitude, we have the tele-
graph equation,

(∂2
t + λTg∂t) ū = (1 − α)2c2

qs∇2
x ū ≡ c2∇2

x ū. (83)

The coefficient (1 − α)2, accounting for granular contacts
softening and the effective elastic stiffness decreasing, is,
in the language of electromagnetism, the inverse dielec-
tric permeability. Inserting ū ∝ eiqx−iωt into eq. (83), we
find c2q2 = ω2 + iωλTg, implying diffusion for the low
frequency limit, ω � λTg,

q ≈ ±
√

ωλTg

c

1 + i√
2

, (84)

and propagation for the high-frequency limit, ω � λTg,

cq ≈ ±ω(1 + i λTg/2ω), (85)
ū ∝ exp[−iω(t ∓ x/c) ∓ x(λTg/2c)]. (86)

The first term in the square bracket accounts for wave
propagation, the second a decay length 2c/λTg, indepen-
dent of the frequency if Tg = Ta is an ambient tempera-
ture. It is strongly frequency and amplitude dependent if
Tg = f |vs| ∝ ωqū ∝ ω2ū is produced by the elastic wave
itself, because the inverse length varies with Tg, going from
Tg ∝ v2

s to Tg ∝ vs.
A brief wave pulse, arbitrarily strong, can always prop-

agate through granular media if its duration is too brief to
excite sufficient Tg for the system to enter the hypoplas-
tic regime. The duration must be much smaller than Tg’s
characteristic time 1/RT .

6 Compaction

The present understanding of compaction under tapping
takes it to be a rather insular phenomenon, in need of
an special entropy not useful for any of the other granu-
lar phenomena. We shall return to the so-called Edwards
entropy in sect. 6.3, after having pondered whether tap-
ping may be related to a ubiquitous variety of compaction
that has been known to engineers for a long time, the slow
increase of the density at given pressure under shear, or
in the presence of an ambient temperature Ta. This more
typical phenomenon is easily understood to be a result
of the fact that Δ relaxes, as accounted for by eq. (28).
Keeping the pressure PΔ = B(ρ)Δ1.5 constant, the den-
sity increases to compensate. (Note that Approaching the
critical state under a constant shear, the circumstances are
more general, because Δ relaxes and is being increased by
a shear rate at the same time. It may increase, leading
to dilation, or decrease, to contraction, as considered in
sect. 3.1.3.)

6.1 Reversible and irreversible compaction

Consider the pressure P = (1 − α)PΔ + PT assum-
ing vanishing shear strain and rate, us, vs = 0, with
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PΔ the elastic, and PT the seismic, contribution, see
eqs. (8), (11), (13),

PΔ = B(ρ)Δ1.5, PT = gp(ρ)T 2
g , (87)

where both B and gp are, for dense media, monotonically
increasing functions of ρ. At small Tg, the seismic pres-
sure PT may be neglected, so ρ must increase when Δ
relaxes, for P = PΔ = const. The increase is irreversible
because the relaxation is. This is the limit most soil me-
chanical experiments are in. Only irreversible compaction
is observed.

For Tg larger, the seismic pressure PT needs to be in-
cluded. Because the density change in gp is faster than in
B, the relaxation of Δ increases PT and decreases PΔ, with
PΔ + PT = const. After the relaxation has run its course,
Δ,PΔ → 0, if one modifies Tg (i.e. the amplitude of the
perturbation) but maintains P = PT , the density will
change in response, in both direction and reversibly. Since
PT (ρ, Tg) ≡ ∂(w/ρ)/∂(1/ρ) is a thermodynamic deriva-
tive, the change is also thermodynamic.

6.2 History dependence versus hidden variables

Changing Tg midway at constant P , with Δ still finite,
will mainly lead to a change in Δ, because the density re-
sponds much more slowly. It disrupts the relaxation of Δ,
in essence resetting its initial condition. This phenomenon
was observed in [125] and interpreted as a memory effect.
Generally speaking, “memory” is usually a result of hid-
den variables: When the system behaves differently in two
cases, although all state variables appear to have the same
values, we speak of memory-, or history-dependence. But
an overlooked variable that has different values for the two
cases will naturally explain the difference. In the case of
compaction, the manifest and hidden variables are ρ and
Δ, respectively.

6.3 Tapping and the Edwards entropy

Numerous experiments have shown that tapping leads to
reversible and irreversible compaction, see the review arti-
cle [126]. It is usually accounted for by the specifically tai-
lored granular statistical mechanics [127,128] and the Ed-
wards entropy SEd, or some generalization of it. Substitut-
ing the volume V for the energy E, and compactivity X for
the temperature T , this theory employs dV = XdSEd as
the basic thermodynamic relation for a “mechanically sta-
ble agglomerate of infinitely rigid grains at rest” [127,128].
The entropy SEd is obtained by counting the possibilities
to package grains stably for a given volume, equating it to
eSEd .

Two reasons prompt us to doubt its appropriateness.
First, the number of possibilities to arrange grains con-
cerns inter-granular degrees of freedom. These are vastly
overwhelmed by the much more numerous configurations
of the inner-granular degrees of freedom. In other words,
the Edwards entropy SEd is a special case of the granu-
lar entropy Sg, and as discussed in the introduction, we

always have Sg � S. One would be able to neglect S and
concentrate on Sg if these two were only weakly coupled,
if the energy decay from Sg to S were exceedingly slow.
This is not the case, the relaxation of Tg ∝ sg is fast.

Second, even assuming a weak coupling, SEd would
still be a overwhelmed measure. The starting point of the
Edwards entropy is the fact that the energy E is always
zero for infinitely rigid, non-interacting grains at rest, how-
ever they are packaged. Taking Sg generally as a function
of energy and volume, Sg(E, V ), we have

dSg =
∂Sg

∂E
dE +

∂Sg

∂V
dV ≡ 1

Tg
dE +

P

Tg
dV.

Usually, one keeps the volume constant, and consider
dSg = (1/T )dE. Taking instead E ≡ 0, we have dSg =
(P/T )dV , equivalent to the Edwards expression dV =
(T/P )dSg ≡ XdSEd.

This derivation ignores three essential points: First,
perturbing the system, allowing it to explore the phase
space, introduces kinetic energy that one must include.
But then E 	≡ 0. Second, because of the Hertz-like contact
between grains, little material is deformed at first contact,
and the compressibility diverges at vanishing compression.
This is a geometric fact independent of how rigid the bulk
material is. Therefore, infinite rigidity is never a realistic
limit in granular media, and there is always considerable
elastic energy stored among grains in mechanically sta-
ble agglomerates. Third, SEd as defined is the granular
entropy at vanishing granular motion and compression.
Its phase space is therefore severely constrained. Gener-
ally speaking, each classical particle has states in a 6D
space, three for the position and three for the velocity.
The Edwards entropy only includes states in a 3D space.
So exp(S) is the number of states times the Loschmidt’s
number; exp(Sg) is the number of states in 6D space times
the number of grains, and exp(SEd) is the number of states
in 3D space (no velocities) times the number of grains.
Therefore

SEd � Sg � S. (88)

Going toward equilibrium, a system searches for the great-
est number of states to equally redistribute its energy. One
bears the burden of proof for the claim that it is sensible
for the system to neglect S, Sg and concentrate on SEd.
In contrast, GSH identifies compaction as a process tak-
ing place at finite Tg and compares the true entropy S of
macrostates at that Tg. It also accounts for entropy in-
crease, by detailing how macroscopic energy decays into
granular heat, and how this is converted to true heat.

More specifically, maximizing the true entropy S, GSH
obtains two sets of equilibrium conditions, one for the solid
and another for the fluid state [48,49],

∇iπij = ρ gi, Tg = 0; (89)
πij = 0, ∇iPT = ρ gi. (90)

The first is the result of Tg vanishing quickly, leaving a
jammed, elastically deformed system. The second (imply-
ing Δ,PΔ = 0) holds, when Tg = Ta is being maintained
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externally. This is the limit of reversible, thermodynamic
compaction, for Δ = 0.

Reversible and irreversible compaction as accounted
for by GSH is a universal granular phenomenon. It oc-
curs at given pressure and Ta, however Ta is created. This
corresponds well to the observation that tapping, though
especially efficient, is but one way to achieve compaction,
leading to results vary similar to that of many other meth-
ods [126]. So it is natural to take the consideration of the
last section to hold for tapping as well. This rings true for
gentle tapping, but stronger one warrants further scrutiny.

Gentle tapping leads to granular jiggling and a small
Tg, though one that fluctuates in time, with periodic flare-
ups. As long as PT may be neglected, Δ will relax accord-
ing to the momentary value of Tg, haltingly but mono-
tonically. Since the relaxation is a slow process, one could
average over many taps to yield a coarse-grained account.
Given a granular column with a free upper surface in the
gravitational field, because a given layer is subject to a
constant pressure, the density will increase to compen-
sate for the diminishing Δ. The characteristic time of Δ-
relaxation diverges towards the end, and is not a constant,
see [129].

Stronger tapping leads to a higher Tg, with Δ relaxing
more quickly. PT must now be included. Periodically, when
all grains are at rest, PT vanishes, and Δ is necessarily in-
creased to maintain the given pressure. This introduces
a non-monotonicity into Δ(t), and raises the question,
whether the system, when being tapped again to arrive
at an elevated Tg, will pick up the relaxation of Δ where
it was left when the system last crushed to a stop, and
also why it should do so. If it does, we can again take tap-
ping as coarse-grainable, intermittent compaction. Then
GSH indeed provides a complete picture for compaction,
with an understanding that is transparent, conventional
and demystified.

7 The quasi-elastic regime

Textbooks on soil mechanics take granular motion in the
hypoplastic regime —say the approach to the critical
state— to be quasi-static, because it is slow and rate-
independent. Yet since it is also strongly dissipative and
irreversible, we do not believe this is right: Quasi-static
motion is not dissipative.

Consider sound propagation in any system including
Newtonian fluid, elastic medium or liquid crystals. The
sound velocity is always an order in the frequency lower
than the damping. This is a general feature: Changing a
state variable A slowly, dissipation is ∝ ∂tA. For ω → 0,
the motion is free of dissipation and rate-independent. One
calls it quasi-static because the system is at this frequency
visiting static states consecutively.

In the hypoplastic regime, reactive and dissipative
terms in GSH are of the same order in the frequency, and
comparable in size —they are exactly equal in the critical
state— and elastic waves are overdamped. So there must
be a true quasi-static regime at even lower frequencies.
A more convoluted explanation, popular in the geotech-
nical community, is to assume that a small incremental

strain is elastic and free of dissipation, but a large one
is elasto-plastic and dissipative. Unfortunately, this is in-
compatible with the basic notion of quasi-static motions:
Starting from a static state of given stress, and applying
a small incremental strain that is elastic, the system is
again in a static state and an equally valid starting point.
The next small increment must therefore again be elastic.
Many consecutive small increments yield a large change
in strain, and if the small ones are not dissipative, neither
can their sum be. This cannot go on for ever, and the limit
is the elastic convexity transition of eq. (12), at which no
elastic state is stable. So in the quasi-elastic regime, gran-
ular media behave in accordance to the simplest elasto-
plastic theory: completely elastic for small shear stresses,
and ideally plastic when the yield stress is breached.

Together, these reasons let us believe that it is Tg,
rather than strain amplitude that decides whether the
system is elastic or elasto-plastic. Of course, small strain
increments achieved with a high but short lasting shear
rate will indeed provoke elastic responses, if Tg does not
have time to get large and produce plastic responses. To
be specific, we quote a few numbers, well aware that these
are at best educated guesses for the case of dry sand: The
Bagnold regime starts at rates of one or two hundred Hz,
the hypoplastic regime is say between 10−3 and 1Hz, and
the quasi-elastic regime lies possibly below 10−5 Hz.

GSH accounts well both for static stress distribution
and the hypoplastic regime. Its prediction of what should
happen in between, in the quasi-elastic regime, derives
from a continuous connection of these two behavior, and is
not yet verified experimentally. Granular media are taken
to be completely elastic, with the elastic energy given by
eq. (6) for the static case of identically vanishing shear
rate, vs ≡ 0. Many known static stress distributions have
thus been successfully reproduced, including silos, sand
piles and point load on a granular sheet, see [61–63]. Also,
Incremental stress-strain relation starting from varying
static stress points [65], and the propagation of anisotropic
elastic waves at varying static stresses [54] are well ac-
counted for. The elasto-plastic motion that are on dis-
play for hypoplastic shear rates and elevated Tg is also in
full agreement with experiments and state-of-the-art engi-
neering theories such as hypoplasticity and barodesy, see
sect. 3.3.

Given the two limits, there is only little leeway of how
to connect both. GSH employs h of eq. (22) as the switch,
such that h = 1 and Tg ∝ vs in the rate-independent hy-
poplastic regime, while h → ∞ and Tg ∝ v2

s quadratically
small in the quasi-static one. Since deviations from elas-
ticity of all expressions vanish with Tg → 0, the transition
is smooth.

For experiments at given shear rates, the key difference
between the hypoplastic and quasi-elastic regime lies in
whether the system retrace the stress-strain curve when
the rate is reversed, see next section. For experiments at
given shear stresses (employing a soft spring, see sect. 7.2
below) in the hypoplastic regime, an initially elevated Tg

will relax sufficiently slowly to give rise to an apparently
diverging creep, see sect. 3.4. This does not happen in the
quasi-elastic regime. The first was observed in [86], and the
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Fig. 8. Why it is hard to observe the quasi-elastic regime if
step motors are used, see text.

authors concluded reasonably that the system harbors a
slow dynamics and is not quasi-static.

7.1 The steep stress-strain trajectory

As discussed above, in the quadratic regime of very slow
shear rates, Tg ∝ |vs|2 → 0, the granular temperature
is so small that the system is essentially elastic, moving
from one elastic equilibrium state to a slightly different
elastic one. This is the reason why we call it quasi-elastic.
Because σs = πs and ∂tus = ∂tεs = vs, the change of the
the shear stress σs is well approximated by the (hyper-)
elastic relation,

∂tσs =
∂σs

∂us
∂tus =

∂πs

∂us
∂tεs = −∂2w

∂u2
s

vs. (91)

Shearing a granular medium at quasi-elastic rates, the re-
sult will be a trajectory σs(εs) that is much steeper than in
experiments at hypoplastic rates, such as observed during
an approaching to the critical state. The gradient is given
directly by the stiffness constant ∂2w/∂u2

s, and possibly
three to four times as large as the average between load-
ing and unloading at hypoplastic rates (because eq. (15)
lacks the factor of (1−α)). This goes on until the system
reaches a yield surface of the elastic energy, say eq. (12).
We expect the system to form shear bands at this point,
see sect. 3.6, 4.2. The critical state will not be reached. Re-
versing the shear rate in between will retrace the function
σs(εs).

7.2 Soft springs versus step motors

Quasi-elastic behavior has not been observed in triaxial
apparatus, even at the lowest rates. This maybe because
they are simply not slow enough. But we suspect other rea-
sons: First, triaxial experiments are frequently performed
with sand saturated in water, and squeezing water through
the narrow gaps between grains is an efficient mean of pro-
ducing Tg. This may push the transition from the elastic to
hypoplastic regime to much lower rates than in dry grains.
Second, the wide usage of step motors in the triaxial appli-
ances may have contributed to a wrong perception. Plot-
ting the shear rate versus time, vs(t), different shear rates
are approximately given as depicted by the two curves of
fig. 8. Although the curves have different average rates

〈vs〉, the time-resolved, maximal rates vMax
s are identical.

And if the time span of vMax
s is long enough for Tg to

respond, and vMax
s is high enough for the system to be in

the linear regime, Tg ∝ vMax
s , the system will display con-

secutive hypoplastic behavior in both cases, irrespective
of the average rate 〈vs〉.

We suggest two ways here to enter the quasi-elastic
regime. Since a given slow stress rate has a high shear
rate at elevated Tg and a low one at vanishing Tg, the
idea is to find the latter. One method is to slowly tilt
an inclined plane supporting a layer of grains. In such a
situation, the shear rate remains very small, and the sys-
tem starts flowing only when a yield surface is breached.
In contrast, employing a feedback loop in a triaxial ap-
paratus to maintain a stress rate would not work well,
because the correcting motion itself typically has strain
rates that are too high. A second method is to insert a
very soft spring, even a rubber band, between the granu-
lar medium and the device moving at a given velocity v to
deform it. If the spring is softer by a large factor a than
the granular medium, it will absorb most of the displace-
ment, leaving the granular medium deforming at a rate
smaller by the same factor a than without the spring. In
other words, the soft spring serves as a “stress reservoir”
for the granular medium. The same physics applies when
the feedback loop is connected via a soft spring. Little Tg

is then excited, as in the experiment [86], see sect. 3.4.

8 Conclusions

This paper represents half a decade worth of attempts
to come to terms, at least qualitatively, with the many
observations of granular dynamics, by employing GSH as
the description and unifying framework. We are happy to
report that it has not failed us once, although the out-
come was rarely obvious when we started to examine a
new experiment. Retrospectively, of course, circumstances
appear much clearer and naturally systematic, and this is
also how we present them above. The range of phenomena
considered is clearly considerable, much wider than any
macro-theory to date. Necessarily, a number of corollary
predictions have also been made, especially in the context
of wide shear bands and the quasi-elastic regime. They cry
out for verification. Also, an observation of the difference
between yield (or elastic instability) and the critical state
would be highly desirable.
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