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Abstract. We introduce an algorithm to obtain coefficients of fractional parentage for light p-shell nuclei.
The coefficients enable one to use Jacobi coordinates in no-core shell model calculations separating off the
center-of-mass motion. Fully antisymmetrized basis states are given together with recoupling coefficients
that allow one to apply two- and three-nucleon operators. As an example, we study the dependence on
the harmonic oscillator frequency of 3H, 4He, 6He, 6Li and 7Li and extract their binding and excitation
energies. The coefficients will be made openly accessible as HDF5 data files.

1 Introduction

One of the major goals of nuclear physics is to under-
stand properties of nuclei based on nuclear two-, three-
and maybe more-body interactions. To this aim, methods
have to be devised that allow one to predict such proper-
ties based on these interactions. In the very light systems,
calculations are often directly done in configuration or mo-
mentum space [1–4]. Calculations using special basis sets,
e.g. hyperspherical harmonics [5,6], Sturmians [7] or har-
monic oscillator (HO) states [8], are also able to provide
accurate solutions for the light systems but become the
tool of choice for systems larger then A = 4.

Here we will concentrate on the no-core shell model
(NCSM) that has become a standard method to perform
nuclear structure calculations for p-shell nuclei (for recent
applications see, e.g., [8–10]) and that is based on an ex-
pansion in terms of HO states. Although the Gaussian long
distance behavior of the HO states is not particularly well
suited for the description of the long distance behavior of
nuclear wave functions [11], the basis enables one to sep-
arate out the center-of-mass (CM) motion exactly and,
which will be important below, to perform exact trans-
formation between different choices of coordinates within
a finite set of HO states. Binding energies and especially
excitation energies do not depend strongly on the long-
range behavior of the wave function and can therefore
be predicted with high accuracy except for states that
are dominated by HO excitations as for example α-cluster
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states. Other schemes, like nuclear lattice calculations, are
more suited for such states [12]. Nevertheless, due to its
flexibility with respect to interactions, the NCSM became
particularly useful for the study of chiral nucleon-nucleon
(NN) and three-nucleon (3N) interactions [13–15]. Using
an importance truncation scheme, the extension to more
complex nuclei is possible [9].

Whereas s-shell nuclei are usually calculated using Ja-
cobi coordinates within the NCSM [16], more complex
systems have so far been mostly calculated using the so-
called m-scheme basis where all nucleons are described
by single-particle states. This avoids the difficult antisym-
metrization of states expressed in Jacobi coordinates. The
price for this simplification is that the CM motion can-
not be explicitly separated out anymore leading to much
larger dimensions of the linear equations to be solved. Fur-
thermore, expensive transformations of interaction matrix
elements from relative coordinates to single-particle coor-
dinates are necessary. Since the matrix elements of the
interactions can often not be stored in the single-particle
basis due to memory constraints, an angular momentum
and isospin coupling scheme is used that needs to be un-
done on-the-fly. These additional problems can nowadays
be handled for 3N interactions [17, 18]. But these con-
straints are still relevant since it is clear by now that, for
accurate calculations, chiral nuclear interactions of high
order in the chiral expansion are required [19, 20]. This
implies that even four-nucleon interactions might be rel-
evant [21–23]. Storing such interactions and uncoupling
them on-the-fly will be tremendously more difficult.

The NCSM describes many-body systems containing A
point-like non-relativistic nucleons in the HO basis where
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all A nucleons of the system are considered to be active [8].
This HO basis allows one to represent the full complex-
ity of nuclear interactions efficiently. But in order to reach
converged results in practical calculations, the interactions
have to be soft and should not include the strong repul-
sion which is part of most nuclear interaction models. In
order to be able to study nuclear systems, most of the
standard interactions are only the starting point for ob-
taining a soft effective interaction. Early NCSM calcula-
tions relied on a decoupling formulated specifically for HO
spaces (see, e.g., [13] for a summary of this approach). In
this case, the effective interactions depend on the HO fre-
quency and model space size and are useful only for NCSM
calculations. As within all approaches to effective interac-
tions, many-body forces are induced. These have been in-
cluded up to the level of three-nucleon forces (3NFs) [24]
which is sufficient to obtain converged results. But this ap-
proach has several disadvantages. The most important one
is probably, that the effective interaction cannot be used
elsewhere, e.g. in Faddeev-Yakubovsky or even coupled-
cluster calculations so that it is difficult to benchmark re-
sults and to check that induced many-body forces do not
have large effects on other observables. The convergence
pattern for these interactions is also more complicated
since convergence for binding energies can be reached
from above and below. These disadvantages can be cir-
cumvented using interactions that either constrain the in-
teractions to low momenta as in the case of Vlow k [25]
or decouple low and high momentum components using
the similarity renormalization group (SRG) [26]. In both
cases, the interactions become soft enough so that con-
verged results can be obtained. In recent years, SRG has
become the tool of choice since it is also possible to ob-
tain induced 3NFs [27]. Our test calculations below are
therefore also based on this approach.

The subject of this work is to come back to the de-
velopment of a Jacobi relative coordinate NCSM started
in [16] and extend it towards p-shell nuclei. The main diffi-
culty is to build up an antisymmetrized set of nuclear HO
states using Jacobi relative coordinates. Our algorithm to
obtain these states is described in sect. 2. These states
alone are still not useful for applications. In order to be
able to calculate matrix elements of two-body operators,
we also need recoupling coefficients that separate out NN
states from the A-body system. In sect. 3, it is summarized
how these transitions can be done. This is then extended
to transition coefficients that separate out 3N clusters in
sect. 4. Such coefficients will be important in the future
to apply 3N interactions within this scheme. Using the
new antisymmetrized states and the transitions to states
that single out an NN subsystem allows us to do first ex-
ample calculations for the binding and excitation energies
for light nuclei in sect. 5. We use a new, mostly auto-
mated scheme to extract binding energies and estimates
of the numerical error from our results, which is partic-
ularly easy to perform based on the Jacobi basis states
since binding energy calculations can be done for a wide
range of HO frequencies. Once the antisymmetrized basis
states are obtained, the individual binding energy calcu-
lations are not computationally expensive anymore since

the states are independent of the interaction and the HO
frequency. In the appendices, we summarize the implica-
tions of the conventions used for HO wave functions and
list the sets of antisymmetrized HO states and transition
coefficients that have been generated so far.

2 Antisymmetrized HO states in a Jacobi
basis

The Schrödinger equation for the internal motion of the
A-nucleon system reads

HA =
A∑

i=1

k2
i

2m
+

A∑

i<j=1

Vij +
A∑

i<j<k=1

Vijk − P 2

2M

=
A∑

i<j=1

2
A

p 2
ij

m
+

A∑

i<j=1

Vij +
A∑

i<j<k=1

Vijk. (1)

Here the CM kinetic energy P 2

2M , where M is the total
mass of the A-nucleon system and P the CM momentum,
is substracted to obtain the internal energy. We included
2N interactions of the pair (ij) (Vij) and 3N interactions of
the triplet (ijk) (Vijk). The expression is rewritten such
that the individual momenta ki of the nucleons are re-
placed by pair momenta pij = 1

2 (ki − kj). m is the mass
of the nucleon. We neglect the small difference of proton
and neutron mass.

We will solve this equation in a basis |α〉 of antisym-
metrized HO states

〈α|HA|β〉〈β|Ψ〉 = E 〈α|Ψ〉, (2)

where a sum over all these HO states |β〉 is implied. The
difficulty is to define the set of antisymmetrized states in
Jacobi coordinates.

2.1 General set of Jacobi coordinates for three clusters

In order to find these antisymmetrized states, we start
from a general set of Jacobi coordinates for a system of
three clusters 1, 2 and 3. Each of the clusters is charac-
terized by its mass, total angular momentum and total
isospin, m1,2,3, s1,2,3 and t1,2,3. The motion is then de-
scribed by the motion within the pair (i.e. (12)) and the
motion of the spectator 3. For an HO basis, the corre-
sponding states read

|n12n3 ((l12(s1s2)S12) J12(l3s3)I3) J ; ((t1t2)T12 t3) T 〉 ,
(3)

where n12 (n3) is the HO quantum number for the rela-
tive motion of 1 and 2 (of the spectator 3), l12 (l3) the
corresponding orbital angular momenta, S12, J12 and I3

are the pair spin, pair total angular momentum and the
total angular momentum of the spectator and J is the to-
tal angular momentum of the system. The isospins of the
pair couple to T12 which combines with the isospin of the
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(13)2 〈n13n2 ((l13(s1s3)S13) J13(l2s2)I2) J ((t1t3)T13t2) T |n12n3 ((l12(s1s2)S12) J12(l3s3)I3) J ((t1t2)T12t3) T 〉(12)3 ≡

(12)3 〈n13n2 ((l13(s1s2)S13) J13(l2s3)I2) J ((t1t2)T13t3) T | P23 |n12n3 ((l12(s1s2)S12) J12(l3s3)I3) J ((t1t2)T12t3) T 〉(12)3 . (12)

Fig. 1. Three-cluster Jacobi coordinates. The left-hand side
singles out the third particle as spectator. The right-hand side
singles out the second one. The arrow defines the direction
of corresponding relative momenta or positions. This direction
defines the phases depending on the corresponding angular mo-
menta.

spectator particle to give the total isospin T . The states
are eigenstates of HOs in the relative coordinates

HHO,rel =
p2

12

2μ12
+

p2
3

2μ3
+

1
2
μ12ω

2r2
12 +

1
2
μ3ω

2R2
3. (4)

where the reduced masses are defined as

μ12 =
m1m2

m1 + m2
, μ3 =

(m1 + m2)m3

m1 + m2 + m3
(5)

and the relative coordinates in terms of single cluster co-
ordinates (momenta) ri (ki) are given by

r12 = r1 − r2, R3 = r3 −
m1r1 + m2r2

m1 + m2
,

p12 =
m2

m1+m2
k1 −

m1

m1+m2
k2, and

p3 =
m1+m2

m1+m2+m3
k3 −

m3

m1+m2+m3
(k1 + k2). (6)

Here we omitted the internal state of the clusters since it
will only become relevant later. This kind of Jacobi co-
ordinate is depicted on the left-hand side of fig. 1. Note
that the direction of the arrows defines the direction of
corresponding relative positions or momenta. It is easy to
convince oneself that eq. (6) is consistent with the left-
hand side of fig. 1.

For such a general set of Jacobi coordinates, we need
to perform a coordinate transformation to the Jacobi co-
ordinates depicted on the right-hand side of fig. 1. Such
a transformation does not change the internal motion of
the clusters and the total parity, angular momentum and
isospin. For an HO basis, the corresponding states read

|n13n2 ((l13(s1s3)S13) J13(l2s2)I2) J ((t1t3)T13 t2) T 〉 (7)

and singles out the second particle as the spectator with
corresponding definitions of the relative coordinates and
momenta. A special property of HO states is that the total
HO energy quantum number

N = 2n12 + l12 + 2n3 + l3 = 2n13 + l13 + 2n2 + l2 (8)

is also conserved.

In order to relate the spatial part of the transitions to
Talmi-Moshinsky brackets [28, 29], we introduce dimen-
sionless relative coordinates using the oscillator lengths
b12 =

√
1

μ12 ω and b3 =
√

1
μ3 ω :

ρ12 =
r12

b12
, ρ3 =

R3

b3
. (9)

The coordinate transformation can then be put into the
form of ref. [30]

(
ρ13

−ρ2

)
=

⎛

⎜⎜⎜⎝

√
d

1 + d

√
1

1 + d

√
1

1 + d
−
√

d

1 + d

⎞

⎟⎟⎟⎠

(
ρ12

−ρ3

)
, (10)

where d = m2 m3
m1(m1+m2+m3)

. Note that the additional minus
signs required in front of ρ2 and ρ3 need to be taken into
account by an extra phase factor (−)l2+l3 . The spatial
part is therefore given by the corresponding HO bracket.
The spin and isospin part just requires recoupling. One
therefore finds for the general coordinate transformation

〈n13n2 ((l13(s1s3)S13) J13(l2s2)I2) J ((t1t3)T13 t2)T

|n12n3 ((l12(s1s2)S12) J12(l3s3)I3) J ((t1t2)T12 t3)T 〉 =

Ĵ13 Î2 Ĵ12 Î3

∑

LS

L̂2 Ŝ2

⎧
⎨

⎩

l13 S13 J13

l2 s2 I2

L S J

⎫
⎬

⎭

⎧
⎨

⎩

l12 S12 J12

l3 s3 I3

L S J

⎫
⎬

⎭

× (−1)l2+l3〈n13 l13, n2l2 : L|n12 l12, n3 l3 : L〉d

× (−1)S13+s2+S12+s3 Ŝ13 Ŝ12

{
s2 s1 S12

s3 S S13

}

× (−1)T13+t2+T12+t3 T̂13 T̂12

{
t2 t1 T12

t3 T T13

}
. (11)

For quantum numbers, we use the abbreviation l̂ =√
2l + 1. The HO bracket 〈n13 l13, n2 l2 : L|n12 l12, n3 l3 :

L〉d follows the conventions of [30] and the mass ratio d
is given above. In appendix A, we explicitly summarize
which configuration and momentum space HO wave func-
tions are implied by these conventions.

For the case that clusters/particles 2 and 3 are iden-
tical, the coordinate transformations are equivalent to
transposition operators

see eq. (12) above

We added subscripts (ij)k to the states to make explicit
the clusters involved in the subsystem and the spectator.
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Table 1. Labeling and graphical representation of different sets of coordinates for the A-body system.

Label Graphical rep. Subsystems Dimensionality

α
�(1)

αA−1 + N A×
“

α
�(1)
”

�(1)
α

�(1)

A−1 + N (A − 1)×

= (A − 1) × A×

α
�(2)

αA−2 + α12
1
2
×

= (A−1)
2

×

= A(A−1)
2

×
“

α
�(1)
”

�(2)
α

�(1)

A−2 + α12 (A − 2)×

= A(A−1)(A−2)
2

×
“

α
�(1)
”

�(A−3)
α

�(1)

3 + αA−3
≈

= (A − 2)×

= A(A−1)(A−2)
2

×

α
�(3)

αA−3 + α3
1
3
×

= (A−2)
3

×

= A(A−1)(A−2)
6

×

Note that, for the right-hand side, this implies that the
quantum number S13 and T13 are total spins and isospins
related to s1, s2, t1 and t2. Correspondingly, the labels of
the other quantum numbers are related to the (12) sub-
system and spectator 3 even if the labels of the quantum
numbers are different. Below, we will explicitly show how
quantum numbers of the A-nucleon system are related to
the quantum numbers in eq. (11).

2.2 Antisymmetrization of A-body states

These relations are the basis of all following expressions.
The calculations often require to represent basis states in
terms of states of subclusters. In table 1, we have sum-
marized the labeling of such states. In short, states are
labeled by a greek letter that indexes all possible states
for a set of given quantum numbers. A superscript ∗(i)
indicates that an i-particle subcluster has been separated
off from the rest of the A-body system. The relative dis-
tance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to
form states with a special subclustering. The graphical
representation given in the table should clarify the clus-
ters involved. Since we are going to obtain the basis states
recursively starting from A = 3, A-body cluster states
are labeled by the index of the (A − x) N-clusters. The

contributing indices are given in the third column. The
number of particles of the subclusters is here given as a
subscript. We assume that the complete state and the clus-
ters themselves are antisymmetrized which is not the case
anymore for the states that explicitly single out clusters.
This implies that more states are required to cover the
physical Hilbert space completely. The last column of the
table gives first estimates of the relations of the dimen-
sionalities.

It is the aim to express the completely antisymmetric
states in terms of |α�(1)〉. In the first step, we therefore
need to obtain the antisymmetrization operator A in this
basis. Assuming antisymmetry for the (A−1)-nucleon sys-
tem, the matrix of A for A nucleons can be written in
terms of the transposition operator of the outer two nu-
cleons PA−1,A as

〈α�(1) |A|β�(1)〉 =
1
A
〈α�(1) | (�− (A − 1)PA−1,A) |β�(1)〉.

(13)
The antisymmetric A-body states are eigenstates of A for
the eigenvalue λ = 1, e.g., they are solutions of

〈α�(1) |A|γ�(1)〉〈γ�(1) |β〉 = λ〈α�(1) |β〉 = 〈 | 〉. (14)

Here, the graphical representation of the states is added
to simplify the notation and a sum over γ

�(1)
-states is im-

plied. The matrix elements 〈 | 〉 are the well-known
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coefficients of fractional parantage (cfp) [31] which define
the antisymmetric A-body state in terms of antisymmet-
ric (A − 1)-body states in relative motion with respect to
the A-th nucleon. We will obtain these states by diago-
nalization of A. The problem is therefore reduced to the
calculations of the matrix 〈α�(1) |A|γ�(1)〉. To this aim, we
need to explicitly define the coupling scheme for states
|α�(1)〉 that are written as

|α�(1)〉 = |αA−1 nA (lAsA) IAtA; (JA−1 IA) J (TA−1 tA) T
〉
.

(15)
The states are based on complete antisymmetrized states
|αA−1〉 with well-defined total angular momentum JA−1

and isospin TA−1 and total HO energy quantum number
NA−1. Note that we dropped the last quantum number
in eq. (15) to simplify the notation. The motion of the
A-th nucleon is given by its HO quantum number nA,
orbital angular momentum lA, spin sA = 1

2 , total angular
momentum IA and isospin tA = 1

2 . In order to end up with
a well-defined total angular momentum J and isospin T
of the A-body system, we finally couple the individual
angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA−1,A.
In the next step, we therefore need to use the known cfp
of the (A− 1)-nucleon system to disentangle the (A–1)-th
nucleon from the antisymmetric cluster. We end up with
states
∣∣∣
(
α

�(1)
)

�(1)
〉

=

|α�(1)

A−1 nA (lA sA) IA tA; (JA−1 IA) J (TA−1 tA) T
〉
. (16)

or more explicitly by reinserting the definition eq. (15)
∣∣∣
(
α

�(1)
)

�(1)
〉

=

|αA−2 nA−1 (lA−1 sA−1) IA−1 tA−1, nA (lA sA) IA tA;
((JA−2 IA−1) JA−1 IA) J ((TA−2 tA−1) TA−1 tA) T

〉
=

∣∣∣∣∣

〉
. (17)

Again, the graphical representation is shown to simplify
the expression. The complete coupling scheme will how-
ever be important to explicitly obtain the matrix element
of PA−1,A. The directions of the momenta (or coordinates)
are defined in fig. 2. In order to match the states of eqs. (3)
and (7) with the ones of eq. (17), we first identify the clus-
ters 2 and 3 with the nucleons A−1 and A. Comparing the
directions given in figs. 1 and 2, it is obvious that the po-
sition vectors of the spectator agree with the one of A-th
nucleon, but the relative positions of the (A − 2)-nucleon
cluster and the (A − 1)-th nucleon are opposite imply-
ing additional phases (−)lA−1 for each of the states. The
coupling of the angular momentum quantum numbers of
the subsystem is also different to the general three-cluster
expression. We need an additional 6j coefficient and an
extra phase to recouple from

(JA−2 (lA−1 sA−1) IA−1) JA−1 to
(lA−1 (JA−2 sA−1) S12) JA−1. (18)

Fig. 2. Two representations of |(α�(1)
)

�(1)〉 coordinates
used for the antisymmetrization operator. The arrangement
matches the general coordinates shown in fig. 1. Note that the
directions of the coordinates differ for the subsystems.

Table 2. Identification of quantum numbers in states of
eq. (17) to the ones of the permutation operators in eqs. (11)
and (12). Given are only relations to the quantum numbers of
eq. (3) since the relation to eq. (7) is a simple generalization.

n12 n3 l12 s1 s2

nA−1 nA lA−1 JA−2
1
2

J12 l3 s3 I3 J

JA−1 lA
1
2

IA J

t1 t2 T12 t3 T

TA−2
1
2

TA−1
1
2

T

S12

sum

S12 is a new quantum number we need to sum over. Its
name is chosen to match eq. (3), for eq. (7) S13 is more
natural.

After this recoupling, the quantum numbers can be
identified to the ones of eq. (11) as shown in table 2 leading
to the matrix element of the permutation operator

〈(
γ

�(1)
)

�(1)
∣∣∣PA−1,A

∣∣∣
(
δ

�(1)
)

�(1)
〉

=

〈 ∣∣∣∣∣

〉
=

(−1)2JA−2+Iδ
A−1+T δ

A−1+lδA+Iγ
A−1+T γ

A−1+lγA

× Îγ
A−1 Ĵγ

A−1 T̂ γ
A−1 Îγ

A Îδ
A−1 Ĵδ

A−1 T̂ δ
A−1 Îδ

A

×
∑

S12S13

Ŝ2
13Ŝ

2
12

{
JA−2

1
2 S13

lγA−1 Jγ
A−1 Iγ

A−1

}{
JA−2

1
2 S12

lδA−1 Jδ
A−1 Iδ

A−1

}

×
∑

LS

L̂2 Ŝ2

{
1
2 JA−2 S13

1
2 S S12

}{
1
2 TA−2 T γ

A−1

1
2 T T δ

A−1

}

×

⎧
⎪⎪⎨

⎪⎪⎩

lγA−1 S13 Jγ
A−1

lγA
1
2 Iγ

A

L S J

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

lδA−1 S12 Jδ
A−1

lδA
1
2 Iδ

A

L S J

⎫
⎪⎪⎬

⎪⎪⎭

×〈nγ
A−1 lγA−1, nγ

A lγA : L|nδ
A−1 lδA−1, n

δ
A lδA : L〉d= 1

A(A−2)
.

(19)

The left and right-hand side states are labeled by super-
scripts γ and δ. We omitted these labels for quantum num-
bers that are conserved. Kronecker δ’s for these quantum
numbers are implied. To complete the antisymmetrization
operator of eq. (13), we only need to use the cfp obtained



Page 6 of 18 Eur. Phys. J. A (2016) 52: 103

Table 3. Dimensions of selected sets of α, α
�(1)

, (α
�(1)

)
�(1)

and α
�(A−2)

states for blocks with given total angular momentum,
isospin and HO energy quantum number for an A-nucleon system.

A J T N dim(α) dim
“

α
�(1)
”

dim
““

α
�(1)
”

�(1)
”

dim
“

α
�(A−2)

”

4 0 0 10 217 791 2373 1225

4 0 0 12 417 1551 4648 2380

4 4 0 12 2123 8370 25110 –

4 4 1 12 3104 12516 37626 –

7 1/2 1/2 7 1269 9957 65369 32190

7 1/2 1/2 9 8963 67453 429132 212318

7 5/2 1/2 9 18839 142535 910342 –

7 5/2 3/2 9 16629 130896 861394 –

before for the (A − 1)N-system to relate the (γ
�(1)

)
�(1)

to
β

�(1)
states

〈(
δ

�(1)
)

�(1)

∣∣∣∣∣β
�(1)

〉
=

〈 ∣∣∣∣∣

〉
=

δspectator

〈 ∣∣∣∣∣

〉

A−1

= δspectator〈δ
�(1) |β〉A−1. (20)

The Kronecker symbol δspectator represents the conserva-
tion of all spectator quantum numbers, the total angu-
lar momentum, isospin and HO energy quantum numbers
for the (A − 1)-body subsystem and the A-body system.
The permutation operator of eq. (13) can then be repre-
sented by

〈
α

�(1)
∣∣∣PA−1,A

∣∣∣β
�(1)
〉

=

〈
α

�(1)

∣∣∣∣∣

(
γ

�(1)
)

�(1)

〉

×
〈(

γ
�(1)
)

�(1)
∣∣∣PA−1,A

∣∣∣
(
δ

�(1)
)

�(1)
〉〈(

δ
�(1)
)

�(1)

∣∣∣∣∣β
�(1)

〉
=

〈 ∣∣∣∣∣

〉〈 ∣∣∣∣∣

〉〈 ∣∣∣∣∣

〉
, (21)

where sums over intermediate states are implied. Because
the total angular momentum J , isospin T and HO energy
quantum number N is conserved by 〈α�(1) |PA−1,A|β

�(1)〉,
the antisymmetrized states can be obtained for each J , T
and N separately. To this aim, we implemented a paral-
lelized code that generates the antisymmetrization matrix
elements of eq. (13) for each block J , T and N and per-
forms a diagonalization using the parallelized eigenvector
packages SCALAPACK [32] and ELPA [33]. The start-
ing point of the recursive procedure is the A = 3 system
where we impose antisymmetry of the (12)-subsystem via
the condition (−1)l12+S12+T12 = −1. Here, we directly use
the basis set defined in eq. (3) to represent the antisym-
metrized states of the three nucleons without further re-
coupling. Based on the diagonalization of the permutation
operator as given in eq. (12), antisymmetrized states are
found that are then used to recursively proceed to A > 3.

Explicit calculations confirmed that the antisym-
metrization operator A has only two eigenvalues λ = 0 and
1. The dimension of the eigenspace for λ = 1 is approxi-
mately by a factor 1

A smaller than the total dimensionality
of the space spanned by |α�(1)〉. The normalized eigen-
vectors are the cfp. We note that fully antisymmetrized
states (and eigenvalues λ = 0, 1) are only obtained when
the complete block of intermediate states for J , T and
N was included. In this first study, we also included all
states of the (A − 2)N-subsystem that can be combined
with the two outer nucleons to J , T and N . The dimen-
sions of selected sets of α, α

�(1)
and (α

�(1)
)

�(1)
states are

given in table 3. The sets generated so far are tabulated in
appendix B. They will be made available in the machine
independent HDF5 format [34].

3 2N + (A − 2)N states for 2N operators

For the representation of two-nucleon operators as for
example the NN interaction, the completely antisym-
metrized states are not suitable. The most efficient way
to obtain matrix elements for these operators is to change
to a basis that singles out two nucleons from the A-nucleon
system. Following the notation of table 1, such states are
given by |α�(A−2)〉. It is the aim of this section to calcu-
late the overlap 〈α|β�(A−2)〉. Again these transition coeffi-
cients will be independent of the HO frequency and will
conserve total A-body J , T and N . Since the two-body
states are directly linked to the matrix elements of any
two-nucleon operator, it will be straightforward to apply
such operators to any A-body state once the transition
matrix elements are known.

Explicitly, the |α�(A−2)〉 states are given by
∣∣∣α

�(A−2)
〉

=

|α12 nλλαA−2;
((l12 (s1s2) S12) J12 (λJA−2) Iλ) J ((t1t2) T12 TA−2) T 〉.

(22)

The state of the two-nucleon subsystem is labeled here
with α12. As usual this combined label corresponds to the
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Table 4. Left-hand side: identification of quantum numbers of |α�(A−2)〉 states to the ones of the coordinate transformation in

eq. (11) used to obtain the transitions to 2N + (A − 2) states. Right-hand side: the same for |(α�(1)
)

�(1)〉 states.

n12 n3 l12 s1 s2

n12 nλ l12
1
2

1
2

J12 l3 s3 I3 J

J12 λ JA−2 Iλ J

t1 t2 T12 t3 T
1
2

1
2

T12 TA−2 T

S12

S12

n13 n2 l13 s1 s2

nA−1 nA lA−1
1
2

1
2

J13 l2 s3 I2 J

JA−1 lA JA−2 IA J

t1 t2 T13 t3 T
1
2

1
2

TA−1 TA−2 T

S13

sum

Fig. 3. Left-hand side: more detailed definition of |α�(A−2)〉
states including the direction of momenta. Right-hand side:

the same for |(α�(1)
)

�(1)〉 states.

HO quantum number n12, the orbital angular momentum
l12 and spin S12 that are coupled to the total angular mo-
mentum J12 and the total isospin T12 of the two-nucleon
subsystem. The relative motion of this cluster with re-
spect to the (A− 2)N rest system is described by the HO
quantum number nλ and the orbital angular momentum
λ. The quantum numbers αA−2, JA−2 and TA−2 have al-
ready been defined above. In order to be able to define
the total angular momentum, one intermediate quantum
number Iλ is necessary, which is given here by coupling
λ and JA−2. Note that the conventions for the direction
of momenta and orderings of couplings correspond indeed
to |α�(A−2)〉 as can be seen in fig. 3 and not, as one might
naively expect, to |α�(2)〉. For shorter notation, we label
the two nucleons separated out with number 1 and 2 here,
but whenever we are referring to |(α�(1)

)
�(1)〉 we keep la-

beling them nucleon A− 1 and A as done in the previous
section.

The transition can be done most easily in two
steps which mostly involve matrix elements already
known. We first use the cfp 〈α|γ�(1)〉 = 〈 | 〉
obtained by solving eq. (14). Then we employ matrix

elements 〈γ�(1) |(δ�(1)
)

�(1)〉 = 〈 | 〉 that were al-
ready involved in the definition of the antisymmetriza-
tion operator eq. (21). The final step, the transition

〈(δ�(1)
)

�(1) |β�(A−2)〉 = 〈 | 〉, is new but can also
be traced back to the general change of three-body co-
ordinates defined in eq. (11). This time, we identify the
clusters 1 and 2 with the nucleons A − 1 and A and the
(A − 2)N-subsystem with cluster 3. For this choice, the
position vectors of the spectator agree with the directions

used in fig. 1 as can be easily seen by comparing to fig. 3.
In order to match the |(α�(1)

)
�(1)〉 states to the general

expressions, a recoupling is necessary again resulting in
a sum over an intermediate spin quantum number S13, a
6j-coefficient and phases. The latter ones differ from the
ones in the previous section because the different identifi-
cation of clusters used in |(α�(1)

)
�(1)〉 here and in the pre-

vious section requires an opposite order for the coupling
of JA−2 and 1

2 to S13 in order to match to eq. (11). Then
the quantum numbers can been identified as summarized
in table 4. Altogether, we find

〈(
δ

�(1)
)

�(1)

∣∣∣∣∣β
�(A−2)

〉
=

〈 ∣∣∣∣∣

〉
=

(−1)3JA−2+2TA−2+Iδ
A−1+lδA−1+lδA+Sβ

12+T β
12+λβ

×Îδ
A−1 Ĵδ

A−1 T̂ δ
A−1 Îδ

A Ŝβ
12 Ĵβ

12 T̂ β
12 Îβ

λ

×
∑

S13

(−1)S13 Ŝ
2

13

{
JA−2

1
2 S13

lδA−1 Jδ
A−1 Iδ

A−1

}

×
∑

LS

L̂2 Ŝ2

{
1
2

1
2 Sβ

12

JA−2 S S13

}{
1
2

1
2 T β

12

TA−2 T T δ
A−1

}

×

⎧
⎪⎨

⎪⎩

lδA−1 S13 Jδ
A−1

lδA
1
2 Iδ

A

L S J

⎫
⎪⎬

⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

lβ12 Sβ
12 Jβ

12

λβ JA−2 Iβ
λ

L S J

⎫
⎪⎪⎬

⎪⎪⎭

×〈nδ
A−1 lδA−1, n

δ
A lδA : L|nβ

12 lβ12, n
β
λ λβ : L〉d= A−2

A
(23)

for this third matrix element.
Based on these three ingredients, the transition to

|β�(A−2)〉 states is obtained by

〈
α
∣∣β

�(A−2)
〉

=

〈 ∣∣∣∣∣

〉
=

〈
α

∣∣∣∣∣γ
�(1)

〉〈
γ

�(1)

∣∣∣∣∣

(
δ

�(1)
)

�(1)

〉〈(
δ

�(1)
)

�(1)

∣∣∣∣∣β
�(A−2)

〉
=

〈 ∣∣∣∣∣

〉〈 ∣∣∣∣

〉〈 ∣∣∣∣

〉
, (24)
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Fig. 4. Left-hand side: more detailed definition of |α�(A−3)〉 states including the direction of momenta. Middle: the same for

|(α�(1)
)

�(2)〉 states. Right-hand side: the same for |(α�(1)
)

�(A−3)〉 states.

˛

˛

˛

“

α
�(1)
”

�(2)
E

=
˛

˛

˛

α
�(1)

A−2 nλλ α12; ((JA−3 (lA−2 s3) IA−2) JA−2 (λ J12) Iλ) J ((TA−3 t3) TA−2 T12) T
E

˛

˛

˛

“

α
�(1)
”

�(A−3)
E

=
˛

˛

˛

α
�(1)

3 nλλ αA−3; ((J12 (l3 s3) I3) J3 (λ JA−3) Iλ) J ((T12 t3) T3 TA−3) T
E

, (26)

where summations over the intermediate states are im-
plied. This has been implemented in two steps. We de-
cided to first perfom the summation over γ

�(1)
, store the

intermediate result in core memory and then proceed to
the (δ

�(1)
)

�(1)
summation. In table 3, we also give the di-

mensions for α
�(A−2)

states for a few selected blocks. The
transition matrix element will be made publicly available
in HDF5 format. The sets generated so far are also tabu-
lated in appendix B.

4 3N + (A − 3)N states for 3N operators

Although we have not used them in this first application,
it will be important in the future to apply also 3N oper-
ators, e.g. to take 3N interactions into account. As can
be seen below, the calculation of the pertinent transition
coefficients can be done in three steps involving four kinds
of matrix elements. Therefore, the calculation is not a di-
rect extension of the 2N + (A − 2)N transitions discussed
in the previous section. We note however that further ex-
tensions towards 4N, 5N, . . . operators can be done using
the same three steps as outlined now for the 3N case. Also
for this reason, we consider it interesting to explicitly give
our results for the 3N + (A − 3)N transitions here.

For the application of the 3N operators, we define
states

∣∣∣α
�(A−3)

〉
=

|α 3 nλλαA−3; (J3 (λJA−3) Iλ) J (T3 TA−3) T 〉 (25)

which single out a three-nucleon cluster. The state of the
three-nucleon subsystem is labeled here with α3. This
state is one of the antisymmetrized 3N states obtained
by diagonalizing the 3N antisymmetrizer for a given total
3N angular momentum J3, isospin T3 and HO quantum
number N3. The states are therefore only meaningfully
defined in conjunction with an a priori given set of cfp for
the 3N system. The relative motion of this cluster with
respect to the (A−3)N-subsystem is described by the HO
quantum number nλ and the orbital angular momentum
λ. The quantum numbers αA−3, JA−3 and TA−3 label the
antisymmetrized state of the (A − 3)N-cluster. Again, in

order to be able to define the total angular momentum,
one intermediate quantum number Iλ is necessary, which
is given here by coupling λ and JA−3. The conventions for
the direction of momenta can be read off from the left-
hand side of fig. 4.

To define the transition matrix elements 〈α|β�(A−3)〉 =

〈 | 〉, we need to introduce two further sets of in-
termediate states:

see eq. (26) above

which are also depicted in fig. 4. Three of the four in-
volved matrix elements are already known from previous
calculations. In the first step, we will need the transi-
tion coefficients to 2N + (A − 2)N states 〈α|γ�(A−2)〉 =

〈 | 〉 and, in the final step, cfp for the 3N system

〈(ε�(1)
)

�(A−3) |β�(A−3)〉 = 〈 | 〉. Also the matrix el-

ements 〈γ�(A−2) |(δ�(1)
)

�(2)〉 = 〈 | 〉 are given by
the known cfp of the (A − 2)N-system. The only new in-

gredient 〈(δ�(1)
)

�(2) |(ε�(1)
)

�(A−3)〉 = 〈 | 〉 can again
be traced back to the general change of three body co-
ordinates defined in eq. (11). Comparing the coordinates
depicted in the middle and on the right of fig. 4 with
the general coordinates of fig. 1, one easily identifies clus-
ters 1, 2 and 3 with the third nucleon, the 2N-cluster and
the (A − 3)N-subsystem. Also the directions of the co-
ordinates agree with the general ones in this case. But
the coupling scheme of both kinds of states, |(α�(1)

)
�(2)〉

and |(α�(1)
)

�(A−3)〉, do not fit into the general expression.
For the |(α�(1)

)
�(2)〉, we therefore recouple the angular mo-

menta of the (A − 2)N-subsystem from

(JA−3 (lA−2 s3) IA−2) JA−2 to
(lA−2 (s3JA−3) SA−2) JA−2 (27)

whereby introducing the new intermediate spin quan-
tum number SA−2. Similarly, the original coupling of the
|(ε�(1)

)
�(A−3)〉 states has to be recoupled from

(J12 (l3 s3) I3) J3 to (l3 (s3J12) S3) J3, (28)
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Table 5. Left-hand side: Identification of quantum numbers of |(α�(1)
)

�(A−3)〉 states to the ones of the cooordinate transformation

in eq. (11) used to obtain the transitions to 3N + (A − 3) states. Right-hand side: the same for |(α�(1)
)

�(2)〉 states.

n12 n3 l12 s1 s2

n3 nλ l3
1
2

J12

J12 l3 s3 I3 J

J3 λ JA−3 Iλ J

t1 t2 T12 t3 T
1
2

T12 T3 TA−3 T

S12

S3

n13 n2 l13 s1 s2

nA−2 nλ lA−2
1
2

J12

J13 l2 s3 I2 J

JA−2 λ JA−3 Iλ J

t1 t2 T13 t3 T
1
2

T12 TA−2 TA−3 T

S13

SA−2

*

α

˛

˛

˛

˛

˛

β
�(A−3)

+

=

*

˛

˛

˛

˛

˛

+

=

*

α

˛

˛

˛

˛

˛

γ
�(A−2)

+*

γ
�(A−2)

˛

˛

˛

˛

˛

“

δ
�(1)
”

�(2)

+*

“

δ
�(1)
”

�(2)

˛

˛

˛

˛

˛

“

ε
�(1)
”

�(A−3)

+*

“

ε
�(1)
”

�(A−3)

˛

˛

˛

˛

˛

β
�(A−3)

+

=

*

˛

˛

˛

˛

˛

+*

˛

˛

˛

˛

˛

+*

˛

˛

˛

˛

˛

+*

˛

˛

˛

˛

˛

+

, (30)

where S3 was introduced as a new spin quantum num-
ber. Both recouplings lead to 6j-coefficients and phases.
Then the quantum numbers can be matched to the ones
of eq. (11) as shown in table 5. The complete expression
then reads

〈(
δ

�(1)
)

�(2)
∣∣∣∣
(
ε

�(1)
)

�(A−3)
〉

=

〈 ∣∣∣∣∣

〉
=

(−1)3JA−3+lδA−2+Iδ
A−2+2T δ

A−2+lε3+Iε
3+1+J12+λδ+λε

× Îδ
A−2 Ĵδ

A−2 T̂ δ
A−2 Îδ

λ Îε
3 T̂ ε

3 Ĵε
3 Îε

λ

×
∑

SA−2S3

(−1)SA−2+S3 ŜA−2 Ŝ
2

3

×
{

JA−3
1
2 SA−2

lδA−2 Jδ
A−2 Iδ

A−2

}{
J12

1
2 S3

lε3 Jε
3 Iε

3

}

×
∑

LS

L̂2 Ŝ2

{
J12

1
2 S3

JA−3 S SA−2

}{
T12

1
2 T ε

3

TA−3 T T δ
A−2

}

×

⎧
⎪⎨

⎪⎩

lδA−2 SA−2 Jδ
A−2

λδ J12 Iδ
λ

L S J

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

lε3 S3 Jε
3

λε JA−3 Iε
λ

L S J

⎫
⎪⎬

⎪⎭

×〈nδ
A−2 lδA−2, n

δ
λ λδ : L|nε

3 lε3, n
ε
λ λε : L〉

d=
2(A−3)

A
. (29)

We note that the extension to 4N-(A − 4)N transitions
will only require straightforward changes of this rela-
tion. Based on these three ingredients, the transition to
|β�(A−3)〉 states is obtained by

see eq. (30) above

where again sums over intermediate states are implied.
Our implementation generates the complete expression in
three steps where the results dependent on the intermedi-
ate quantum numbers. As can be seen from table 1, the
size of these sets of intermediate states are orders of mag-
nitude larger than the set of completely antisymmetrized
A-body states implying not only more floating point op-
erations but also larger memory requirements. The par-
allelization on a distributed memory massively parallel
computer therefore required a compromise of most effi-
cient memory usage and minimalization of communication
between the processes. The details of the technical imple-
mentation are discussed in more detail in [35]. We again
stress that an extension to more complex operators can
be done using the same algorithms in the future.

5 Results

As a first application of the cfp and transition coefficients,
we are now presenting binding energies for light nuclei
based on these Jacobi HO states. For this test, we only use
NN interactions. In order to be able to obtain converged
results, we rely on SRG evolved interactions [26] start-
ing from the chiral interaction at next-to-next-to-next-to-
leading order (N3LO) from the Idaho group [36] consider-
ing NN partial waves up to J

max

NN = 6. The charge depen-
dence of the nuclear force is taken into account by building
an averaged NN interaction as outlined in [37]. The rel-
ative weight of proton-proton (pp), neutron-neutron (nn)
and neutron-proton (np) interactions in isospin T12 = 1
states thereby depends on the nucleus considered. For pp
and nn interactions, we added the electromagnetic inter-
actions of AV18 [38].

For the solution of the Schrödinger equation and taking
only NN interactions into account, we rewrite the matrix
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Fig. 5. ω-dependence of the 3H binding energy for λ = 1.5 fm−1 (left) and λ = 2.5 fm−1 (right). Results for different model
space sizes can be distinguished by the different markers and colors. The solid lines are added to guide the eye, the dashed lines
are obtained using eq. (33).

elements of the Hamiltonian in the antisymmetrized A-
nucleon basis |α〉 as

〈α|HA|β〉 =

〈
α

∣∣∣∣∣γ
�(A−2)

〉〈
γ

�(A−2)

∣∣∣∣∣∣

A∑

i<j=1

Hij

∣∣∣∣∣∣
δ

�(A−2)

〉

×〈δ�(A−2) |β〉. (31)

Hij = 2
AEkin

ij + Vij is the Hamilton operator of the NN

system ij consisting of the kinetic energy Ekin
ij = p2

ij

2m and
the potential Vij . The combinatorial factor 2

A results from
the transition of single-nucleon kinetic energies to relative
kinetic energies.

The coefficients 〈α|γ�(A−2)〉 are known from the pre-
vious sections, independent of the HO frequency ω and
conserve total J , T and N . The two-nucleon matrix ele-
ments can be simplified making use of the identity of the
nucleons
〈

γ
�(A−2)

∣∣∣∣∣∣

A∑

i<j=1

Hij

∣∣∣∣∣∣
δ

�(A−2)

〉
=

δ(N ,J,T )γA−2(N ,J,T )δA−2

(
A

2

)〈
γ12

∣∣∣∣

(
2
A

Ekin
ij +V12

)∣∣∣∣ δ12

〉
.

(32)

These matrix elements conserve J and T in our approxi-
mation. They will however not conserve N . Nevertheless,
all quantum numbers of the (A− 2)N-subsystem are con-
served as indicated by the Kronecker δ symbols. As usual,
the NN interaction is diagonal in J12 and T12. Therefore,
the application of HA on an arbitrary A-body state can
be separated into three steps that only evolve rather low-
dimensional operations. The use of Jacobi coordinates fur-
ther reduces the dimensionality since the problem can be
solved for each J and T independently. Therefore, once
the cfp and transition coefficients are known, the calcu-
lations are much simpler and can be done quickly. In the
following, we therefore map out the complete dependence
on the HO frequency ω of the energy of each state for all
model space sizes defined by the maximal HO energy N .

5.1 Extrapolation procedure for the example of 3H

We found empirically that, in most cases, the ω-depend-
ence around the optimal frequency ω0 can be well de-
scribed by the ansatz

Eb(ω) = EN + κ(log(ω) − log(ωopt))2. (33)

By a simple fit, the parameters EN , ω0 and κ are ex-
tracted from the results for a given model space size N (in
a limited regions around ω0). As an example, we show the
ω-dependence as solid lines for the case of 3H in fig. 5 for
two different SRG cutoffs λ = 1.5 fm−1 and λ = 2.5 fm−1.
Different lines correspond to different model space sizes.
The result of the fit to eq. (33) is also shown by the
dashed lines. As expected the results become less ω de-
pendent for larger model spaces. It is also clearly seen
that the convergence is much faster for smaller λ. For this
small system, it is still possible to obtain converged re-
sults for λ = 2.5 fm−1, this will however not be possible
anymore for the more complex nuclei. For λ = 1.5 fm−1,
the convergence is fast enough that we will also be able to
present converged numbers for p-shell nuclei in this first
application. Around the optimal ω = ω0 at the minimum,
eq. (33) is able to reproduce the ω-dependence very well.
The agreement of the fits with the results even improves
for larger model spaces. Therefore, we will extract our final
result for a given model space using the fit result EN .

Figure 6 again summarizes these results for 3H and
λ = 1.5 fm−1 and λ = 2.5 fm−1. In order to extract
the converged binding energy from the N -dependence ob-
tained from eq. (33), we assume a simple exponential de-
pendence

EN = E∞ + Ae−bN . (34)

We note that other effective field theory motivated ex-
trapolation schemes have been discussed in [39,40]. They
should be employed in forthcoming publications. But for
our purpose here, the exponential interpolation was suf-
ficiently accurate to determine the final binding energies.
In order to determine E∞, A and b, we first assign an un-
certainty estimate to each EN . This uncertainty estimate
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Fig. 6. N -dependence of the 3H binding energy for λ = 1.5 fm−1 (left) and λ = 2.5 fm−1 (right). The black line is obtained
using eq. (34). The result of the exponential extrapolation is indicated by the red line. The shaded area indicates the estimated
uncertainty of the final result which is given by the difference of the result for the largest model space and the exponential
extrapolation.

Table 6. Ground state and excitation energies of 3H, 4He, 6He, 6Li and 7Li for different cutoff parameters λ in comparison
to the experimental values [41,42]. ∗ denotes 6He excitation energies where the uncertainty estimate might not be reliable. See
text for further explanations.

λ 3H 4He 6He 6Li 7Li
[fm−1] [MeV] [MeV] [MeV] [MeV] [MeV]

1.0 −7.460 −24.271 −26.76(4) −29.70(1) −37.04(10)

2.21(4) ∗ 3.10(2) 0.133(2)

1.2 −7.929 −26.549 −28.76(10) −31.77(8) −39.68(28)

2.42(7) ∗ 3.08(1) 0.219(2)

1.5 −8.264 −28.173 −29.91(30) −32.90(29) −41.12(84)

2.58(9) ∗ 2.94(1) 0.335(9)

1.8 −8.332 −28.397(1) −29.89(93) −32.83(96) −41.67(303)

2.78(8) ∗ 2.81(2) 0.420(27)

2.0 −8.314(4) −28.189(3) −29.80(191) −32.80(204) −41.50(505)

2.72(7) ∗ 2.76(3) 0.428(33)

2.2 −8.269(6) −27.890(10) −30.35(384) −33.68(434) −43.02(937)

2.65(6) ∗ 2.68(7) 0.421(39)

2.5 −8.184(11) −27.378(23) −34.26(1026) −38.68(1192) −51.72(2302)

2.53(4) ∗ 2.53(10) 0.443(60)

exp. −8.482 −28.296 −29.271(54) −31.994 −39.245(7)

1.797(25) 2.186(2) 0.478(3)

will serve as a weight for the fit ensuring that automati-
cally more weight is given to the larger model spaces for
the determination of the parameters. It is not the aim to
assign a realistic absolute uncertainty to each individual
EN , but only to determine an estimate of the relative
uncertainties of the different EN . We therefore assigned
ΔEN = |EN −EN+2| for the uncertainty. For the largest
model space Nmax considered, we used the estimate of the
previous model space. Therefore, the two largest model
spaces contribute to the fit with equal weight. The er-
rorbars obtained in this way are also shown in fig. 6 to-
gether with the result of the fit. Our final binding en-
ergy is then given by E∞. In order to obtain a conserva-
tive estimate of the uncertainty of this result, we assign
ΔE∞ = |E∞ − ENmax |. E∞ and ΔE∞ are shown in the

figures as red line and the surrounding shaded area, re-
spectively.

Similar calculations have been performed for seven val-
ues of λ between 1.0 fm−1 and 2.5 fm−1. The results for 3H
and all other nuclei considered in this work are summa-
rized in table 6. The energies for 3H have been obtained
with very high accuracy since we were able to obtain the
cfp for very large model spaces for this system. We also
note that the results for 3H agree well with the results
obtained by solving Faddeev equations [43].

5.2 4He

The 3N system is an interesting test case since the con-
vergence is quite slow because the nucleus is not very
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Fig. 7. ω-dependence of the 4He binding energy for λ = 1.5 fm−1 (left) and λ = 2.5 fm−1 (right). Results for different model
space sizes can be distinguished by the different markers and colors. The solid lines are added to guide the eye, the dashed lines
are obtained using eq. (33).
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Fig. 8. N -dependence of the 4He binding energy for λ = 1.5 fm−1 (left) and λ = 2.5 fm−1 (right). The black line is obtained
using eq. (34). The result of the exponential extrapolation is indicated by the red line. The shaded area indicates the estimated
uncertainty of the final result which is given by the difference of the result for the largest model space and the exponential
extrapolation.

compact. So contributions from large N can be tested.
But since the cfp already separate off an NN-subsystem,
they do not test our transition coefficients to 2N-(A−2)N-
states. Therefore, we consider as a second test nucleus 4He.
Here, for the first time, the latter transition matrix ele-
ments enter. We however expect much faster convergence
with respect to N since the nucleus is more compact. At
the same time, solutions of Yakubovsky equations [43] are
available so that the results and the extrapolation proce-
dure can be checked.

Figure 7 shows the ω-dependence again for λ =
1.5 fm−1 and λ = 2.5 fm−1. It can be seen that, indeed,
smaller N are sufficient to get converged results. Again
eq. (33) gives a very good description of the ω-dependence
of the results around the optimal values. In fig. 8, the re-
sulting N -dependence of the energies is shown. Since the
values of N are now much smaller and since convergence
is fast, our prescription to estimate the uncertainties leads
to much stronger differences of the error estimates for dif-
ferent N . This implies that the fit to eq. (34) is dominated
by the three larges model spaces. We observe that, also for
this case, the binding energies can be extracted with high
accuracy. We confirmed that the extracted energies agree

with our solutions of Yakubovsky equations. Our results
for 4He are also summarized in table 6.

Finally, we compare in fig. 9 the λ-dependence of 3H
and 4He. It is well known that the two binding energies are
strongly correlated and, therefore, it is not too surprising
that the results follow the same trend. We just note that
4He reaches the experimental value for its binding energy
of −28.3MeV around λ = 1.8 fm−1. For 3H, the binding
energy is also minimal for this value but does not reach
the experimental value of −8.482MeV.

5.3 7Li

We now turn to the more difficult p-shell nuclei. Here,
7Li is an interesting test case because the first excited
state is bound experimentally. So far, we have generated
cfp up to N = 9 for this system (see appendix B). Our
results for the ω and N -dependence for this range of N
for the Jπ = 3

2

− ground state are summarized in figs. 10
and 11. Again we show results for our two standard SRG
cutoffs λ = 1.5 fm−1 and 2.5 fm−1. For both cases, the ω-
dependence can be described well by eq. (33). But it is
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Fig. 9. λ-dependence of the 3H (left) and the 4He (right) binding energies. Errorbars indicating the uncertainties of the energies
are too small to be seen.
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Fig. 10. ω-dependence of the ground-state energy of 7Li for λ = 1.5 fm−1 (left) and λ = 2.5 fm−1 (right). For lines and markers
see fig. 7.
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Fig. 11. N -dependence of the ground-state energy of 7Li for λ = 1.5 fm−1 (left) and λ = 2.5 fm−1 (right). For lines and markers
see fig. 8.

obvious that the model spaces used are not sufficient to
obtain converged results for λ = 2.5 fm−1. Although the
lines for different N are getting closer, we observe that
the optimal ω shifts to larger values with increasing N .
This implies that we do not find smaller steps for the ex-
tracted EN when going to larger spaces as can be seen on
the right of fig. 11. The exponential extrapolation and the
extracted uncertainty, which is also shown in the figure,
clearly reflects that the model space size is too small to get
converged results for this cutoff. This is not too worrysome

since it is well known that, once induced SRG 3N interac-
tions are taken into account, the λ-dependence becomes
mild enough that much smaller values of λ are possible to
get physically meaningful results [39]. For λ = 1.5 fm−1,
we find the usual behavior as for the s-shell nuclei. The
extracted EN clearly show a pattern of convergence that
allows one to extract meaningfully the binding energy as
shown on the left-hand side of fig. 11.

Of course, similar calculations are possible for the ex-
cited state of 7Li. Such calculations show that the ground
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Fig. 12. Left-hand side: ω-dependence of the excitation energy of 7Li for λ = 1.5 fm−1. Markers indicate results for the excitation
energy for different N depending on ω. The lines connect results for the same N to guide the eye. The extracted excitation
energy and its uncertainty are given by the dashed lines and the box on the right of the graph, respectively. Right-hand side:
Extracted N -dependence of the same excitation energy. The full result and its uncertainty are shown by the red solid line and
the shaded box surrounding it, respectively.
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Fig. 13. λ-dependence of the ground-state energy (left) and of the excitation energy (right) of 7Li. The uncertainties extracted
as described in the text are given by the errorbars.

states and excited state binding energies are strongly cor-
related for NCSM calculations and that it is much more
efficient to look directly at the excitation energies. For the
first excited Jπ = 1

2

− state of 7Li, we calculated the ex-
citation energy depending on the HO frequency and the
model space size. For the example of λ = 1.5 fm−1, we
show the results for the ω-dependence on the left-hand
side of fig. 12. The excitation energies are used in a range
that includes the two ω values right and left from the opti-
mal ω values of the ground and excited state, respectively.
It is reassuring that the ω-dependence flattens out when
going to larger model spaces. In order to extract the ex-
citation energy for a given N , we calculated the average
of the results of these ω. The uncertainty was then esti-
mate by the standard deviation of the results from this
average. Of course, since the ω range is chosen in an ad
hoc way, these uncertainties cannot be understood as ab-
solute uncertainties. Still they indicate the errors for each
N relative to the others. In the second step, we therefore
build a weighted average of the excitation energies for all
N where the weight is given by errors extracted from the
ω-dependence. The results are shown on the right-hand

side of fig. 12. In this way, we were able to obtain quite
accurate results for the excitation energies.

To conclude this subsection, we finally show the λ-
dependence for the binding energy of the 7Li ground state
and the excitation energy for the first excited state in
fig. 13. The uncertainties of both quantities are also shown.
As discussed above, the model spaces used here are large
enough to obtain accurate binding energies for λ below
approximately 2 fm−1. We find it however interesting that
the excitation energies can be obtained fairly accurately
even for larger λ. Again, we refer to table 6 for the nu-
merical values of the binding and excitation energies.

5.4 6Li and 6He

Finally, we present first results for the A = 6 systems.
We start with 6Li, for which we have prepared the cfp
and transition coefficients for the Jπ = 1+ ground state
and the Jπ = 3+ excited state up to N = 10. The ω-
dependence is very similar to the one found for 7Li. Since
we are now considering more HO excitations, the results
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Fig. 14. N -dependence of the ground-state energy (left) and of the excitation energy (right) of 6Li for λ = 1.5 fm−1. The full
result and its uncertainty are shown by the red solid line and the shaded box surrounding it, respectively.
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Fig. 15. λ-dependence of the ground-state energy (left) and of the excitation energy (right) of 6Li.
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Fig. 16. N -dependence for λ = 1.5 fm−1 (left) and λ-dependence (right) of the ground-state energy of 6He.

are generally less dependent on the HO frequency than for
A = 7. Therefore, we directly present the N -dependence
for λ = 1.5 fm−1 in fig. 14. As can be seen, the pattern
of convergence is very regular for the binding energy and
the excitation energy and the results are quite accurate.
We note that the excited state is above the deuteron-4He
threshold for many λ as it also is experimentally. Nev-
ertheless, it is possible and regularly done to extract the
excitation energy from NCSM calculations.

Figure 15 (and the explicit values in table 6) sum-
marize our results for the binding energy and excitation

energy for the full range of λ. It sticks out that the uncer-
tainty estimates for λ > 2 fm−1 decrease again. This be-
havior seems unnatural and needs to be studied in larger
model spaces in the future.

For 6He, cfp exist up to N = 10 for the Jπ = 0+

ground state and the Jπ = 2+ excited state. We observe
that the pattern of convergence for the binding energy is
again very similar to 6Li and 7Li. Therefore, accurate re-
sults could be extracted as shown in fig. 16. But, in this
particular case, the results for the excitation energy of the
Jπ = 2+ state were problematic. To exemplify this, we
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Fig. 17. Left-hand side: ω-dependence of the excitation energy of 6He for λ = 1.5 fm−1. Right-hand side: Extracted N -
dependence of the same excitation energy. For an explanation of the notation see fig. 12.

show in fig. 17 the results for the ω-dependence of the exci-
tation energies for λ = 1.5 fm−1. Here, even for this rather
small λ, the ω-dependence is very small in all cases. But
the changes when going to larger model spaces are large.
The resulting N -dependence is therefore very unsystem-
atic. Since results for even lower cutoffs show a similar
behavior, we refrain from showing the λ-dependence of
the excitation energy. To provide benchmark results, we
however included the numerical values of our automated
extraction procedure in table 6. We stress however that
the uncertainty estimates of the excitation energies for
6He given in the table are probably not reliable.

6 Conclusion and outlook

In this work, we have described in detail a new implemen-
tation of cfp that allow one to perform NCSM calculations
for light p-shell nuclei using relative coordinates. The use
of relative coordinates separates off the CM motion and
uses basis states with definite total angular momentum
and isospin. Thereby, the dimension of the basis is con-
siderably reduced. For the application of two-nucleon op-
erators (e.g., NN forces), we introduced transition matrix
elements to states that separate a two-nucleon cluster from
the nucleus. These states enable a quite simple application
of NN operators to A-nucleon states.

Once the cfp and transition elements are known, cal-
culations for light p-shell nuclei require only modest com-
putational resources. Therefore, as a first application, we
applied the new basis set to s-shell and the lightest p-shell
nuclei. We used the new set of basis states to map out
the HO-frequency dependence of the results for increas-
ing model space sizes and devised an automated scheme
to extract binding and excitation energies together with
uncertainty estimates of the final results. The extraction
procedure was applied to the s-shell nuclei as well as 6He,
6Li and 7Li and resulted in consistent results for all bind-
ing energies and the excitation energies of 6Li and 7Li. For
the excitation energy of 6He, the ω-dependence for small
model spaces turned out to be implausibly small and,

therefore, the uncertainty estimates need to be checked
using larger model spaces in the future.

All these calculations were done with SRG evolved
NN interactions for λ between 1.0 fm−1 and 2.5 fm−1. We
showed that within the model space, for which we have
generated cfp so far, converged results could be obtained
for λ < 2.0 fm−1. Recent NCSM calculations within the m-
scheme have already shown that one obtains λ-insensitive
results within this range of SRG parameters [39] once
3NFs have been included.

In order to be able to apply 3NFs, one more set of tran-
sition coefficients needs to be calculated. We also formu-
lated the pertinent equations for these transitions. They
have already been implemented and basic properties, like
orthogonality, have been checked. Now they have to be ac-
companied by corresponding 3NF matrix elements. Work
in this direction is in progress. In a very similar manner,
such transitions can be extended to 4N and higher-body
operators. This is especially interesting since it is not clear
at this point whether 4NFs can give sizable contributions
to p-shell binding energies. While the λ-dependence of the
4He binding energy including induced 3NFs does not in-
dicate significant contributions of 4N interactions [44], a
direct calculation of the leading chiral 4NF revealed that
a small net contribution is obtained because two sizable
terms tend to cancel each other [23]. It needs to be clar-
ified whether this cancelation is as effective in other sys-
tems. For this, the Jacobi NCSM will be an ideally suited
tool since full use can be made of angular momentum and
isospin conservation of the 4NF.

One important aspect of this work is to make the cfp
and transition coefficients available. The corresponding
data files have been generated using the HDF5 format
and are platform independent. We hope that, in this way,
nuclear structure calculations become simpler for other
groups and can be applied to a wider range of problems.
With the test calculations shown here, the cfp and NN
transition coefficients are ready to be made accessible.
The 3N transition coefficients will be made available, too,
once they have been tested in similar calculations involv-
ing 3NFs.
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Appendix A. HO wave functions Rnl in
coordinate and momentum space

cfp and transition coefficients rely on the Talmi-Moshinsky
brackets of ref. [30]. In this appendix, we shortly summa-
rize the conventions for the HO wave functions related to
the conventions used in this work. We define the dimen-
sionless HO wave functions

R̂nl(ρ) = (−1)n

[
2n!

Γ
(
n+l+ 3

2

)
] 1

2

× exp
(
−ρ 2

2

)
ρlL

(l+ 1
2 )

n (ρ2). (A.1)

The configuration space Rnl are just given by a simple
rescaling involving the HO length b:

Rnl(r) = b−
3
2 R̂nl

(r

b

)
. (A.2)

The momentum space wave function is then obtained by
a Fourier transformation

Rnl(p) =

√
2
π

il
∫

dr r2 jl(p r)Rnl(r) (A.3)

that leads to

Rnl(p) = (−1)n il b
3
2 R̂nl(bp). (A.4)

Note that matrix elements that are parity conserving will
only acquire a real phase due to the il factor.

Appendix B. Existing cfp and transition
coefficients

In this appendix, we summarize the cfp and transition
coefficients that have already been generated. More sets
of coefficients are currently generated.

The following table shows the available sets of cfp for
the A = 3 to A = 7 system. Ranges of J , T and N values
of calculated blocks are given. The label “complete” indi-
cates that sets for all J and T possible for the given N
are available.

J T N

A = 3 1
2 , . . . , 51

2
1
2 , 3

2 0, . . . , 24 (complete)

A = 4 0, . . . , 14 0, . . . , 2 0, . . . , 12 (complete)

A = 5 1
2 , . . . , 25

2
1
2 , . . . , 5

2 1, . . . , 10 (complete)

A = 6 0, . . . , 13 0, . . . , 3 2, . . . , 10 (complete)

A = 7 1
2 , . . . , 25

2
1
2 , . . . , 7

2 3, . . . , 9 (complete)

The next table summarizes the same for 2N+(A−2)N
transition coefficients. At this point, the A = 4 system is
complete for N ≤ 10. In the other cases, isospins and an-
gular momenta correspond to the states of selected nuclei.
Again, more sets of matrix elements are currently gener-
ated.

J T N

A = 4 0, . . . , 12 0, . . . , 2 0, . . . , 10 (complete)
4He 0 0 11, 12
6Li 1, 2, 3 0 2, . . . , 10
6He 0, 2 1 2, . . . , 10
7Li 1

2 , 3
2

1
2 3, . . . , 9
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Phys. Rep. 274, 107 (1996).

2. A. Nogga, H. Kamada, W. Glöckle, Phys. Rev. Lett. 85,
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16. P. Navrátil, G.P. Kamuntavičius, B.R. Barrett, Phys. Rev.

C 61, 044001 (2000).
17. R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil,
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Phys. Rev. C 87, 021303 (2013).

19. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

20. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011).
21. E. Epelbaum, Phys. Lett. B 639, 456 (2006).
22. E. Epelbaum, Eur. Phys. J. A 34, 197 (2007).
23. A. Nogga, E. Epelbaum, J. Golak, H. Kamada, H. Wita�la,
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