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Abstract. The effects of an inhomogeneous competing environment on the extent of cooperation are studied
within the context of a site-diluted evolutionary snowdrift game on a square lattice, with the occupied sites
representing the players, both numerically and analytically. The frequency of cooperation FC generally
shows a non-monotonic dependence on the fraction of occupied sites ρ, for different values of the payoff
parameter r. Slightly diluting a lattice leads to a lower cooperation for small and high values of r. For
a range of r, however, dilution leads to an enhanced cooperation. An analytic treatment is developed for
FC = FI

C +FII
C , with FI

C emphasizing the importance of the small clusters of players especially for ρ � 1
and being treated exactly. A pair approximation for the contribution FII

C from the other players is shown to
be inadequate. A local configuration approximation (LCA) that treats the local competing configurations
as the variables and amounts to include spatial correlation up to the neighborhood of a player’s neighbors
is developed. Results of FC(ρ) and the number of different local configurations from LCA are in good
agreement with simulation results. A transparent physical picture of the dynamics stemming from LCA is
also presented. The theoretical approach provides a framework that can be readily applied to competing
agent-based models in structurally ordered and disordered populations.

1 Introduction

How cooperative behavior could ever emerge in a popula-
tion of selfish and competing individuals is an important
question [1–9]. Different models that involve agents with
competing strategies have been proposed and studied,
with the aim of investigating the mechanism for the emer-
gence of cooperation [7]. The prisoner’s dilemma (PD) [1],
for example, provides a paradigm with a Nash equilibrium
corresponding to mutual defection. When PD is played re-
peatedly for an infinite number of rounds, however, coop-
eration could emerge [1,10]. In a population with spatial
structure, agents are restricted to interact with a few con-
nected neighbors. A simple structure is a two-dimensional
(2D) square lattice in which a player is represented by a
lattice point. It was found that cooperation could spread
in such populations [3,11–14]. As a theoretical attempt,
Nakamaru et al. [11] developed a mean-field approach and
also the pair approximation which treats spatial correla-
tion up to the neighbors, with results showing some of
the main features as observed in simulation results. Be-
sides regular lattices, how cooperation evolves in complex
networks was also studied by simulations [15–17] and the
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extent of cooperation was found to depend sensitively on
the spatial structure. It is worthy to note that implement-
ing the concept of co-action on symmetric games leads
to cooperation as the rational outcome, even in one-shot
games [18].

Disordered systems have been a topic of great inter-
est [19]. Disorder plays an important role in systems in
which the basic entities interact only when they are close
to each other. Diluting a regular lattice randomly by tak-
ing away some sites, for example, leads to the percola-
tion transition [20] that signifies a qualitative change in
the connectivity in a system. Such dilution could also be
coupled with other physics problems, e.g., the conductiv-
ity problem in random resistor networks [20] and critical
phenomena associated with diluted Ising model [21]. In the
context of competing games, Vainstein and Arenzon [22]
studied a site-diluted model in which a fraction of ran-
domly selected sites on a lattice are left empty and the
remaining sites represent players. They found that coop-
eration is enhanced in disordered PD. Guan et al. stud-
ied the snowdrift game (SG) in the disordered lattice and
found similar features [23]. Generally, a disordered lat-
tice introduces an inhomogeneous competing environment
as the number of nearest neighbors differs from player to
player [24]. This is crucial when players adapt their action
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by referencing to their neighbor’s performance. Enhanced
cooperation was also found for mobile players in disor-
dered structures [23,25] when they engage in PD, SG [26],
and Stag Hunt (SH) game [27]. A good understanding on
the interplay between the extent of cooperation and spa-
tial structures is essential and yet much remains to be
explored. A good theoretical analysis on the effects of dis-
ordered lattices, for example, is lacking.

In the present work, we propose a site-diluted evolu-
tionary snowdrift game and focus on studying the effects
of disorder. Although there were similar simulation results
reported [9,23] in disordered models using different evolu-
tionary mechanisms, our focus is to present a theoretical
framework that can be applied to a wide range of problems
concerning competing games in disordered systems. This
is a challenging task as theoretical analysis of evolutionary
games in regular lattices is far from satisfactory, let alone
disordered lattices. Hauert and Doebeli [26] developed a
theory based on the pair-approximation for SG in regular
lattices in which the players compare their average payoff
for adapting their strategy in a synchronous manner. The
theory could only capture the trend of how cooperation
depends on the SG payoff parameter, but the key feature
of the presence of a fully cooperative phase is missing.
The pair approximation was shown to work better [28]
when players update their strategies asynchronously af-
ter a round of the game with a chosen neighbor. Theories
have also been developed recently for a few co-evolving
systems in which an underlying dynamics drives changes
in the network structure. These attempts include adap-
tive PD [29], dissatisfied adaptive SG [8,30], adaptive
voter models [31–34], and co-evolving epidemics [35–38].
These theories typically aim at setting up dynamical equa-
tions [29,34,35,39] based on the evolutionary dynamics of
the system. The number of variables and the number of
equations increase with the range of spatial correlation
that the theory aims to capture. General solutions are
difficult to achieve [36] and often approximations are re-
quired to close the set of equations. Marceau et al. [40]
proposed an improved compartmental method to account
for the neighborhood of an agent in the adaptive epi-
demic model more precisely. The theory gives results in
good agreement with simulation data [40,41]. When the
compartmental method is applied to an evolving voter
model [42,43], however, only qualitative agreement can be
achieved [43]. It is important to consider the strength and
the spatial extent of correlation in the dynamics in formu-
lating a theory. For systems with weak correlation, mean-
field theories based on a binomial closure scheme would
suffice [8,44,45]. In lattices and diluted lattices in which
the local competing environment is hardly randomized, it
is expected that spatial correlation is too important to be
ignored. The present work aims to shed light into the chal-
lenging question of formulating a theory for evolutionary
games in a disordered competing environment.

The plan of the paper is as follows. In Section 2, we in-
troduce the site-diluted evolutionary snowdrift game and
present the key features of the model as obtained by nu-
merical simulations. The extent of cooperation shows a

non-monotonic dependence on the fraction of diluted sites.
In Section 3, we develop an analytic framework that sepa-
rates the effects of the smaller clusters of players from that
of the bigger clusters. The small clusters can be treated
exactly. For the bigger clusters, we show that the pair ap-
proximation is inadequate. This inadequacy points to the
necessity of incorporating a longer spatial correlation into
the theory. A local configuration approximation (LCA)
that includes the local competing environment of a player
as well as the neighborhood of his opponents is introduced.
In Section 4, results of LCA are shown to be in good agree-
ment with simulation results. In a diluted lattice, LCA
also gives a general and physically transparent picture of
how players are continually re-distributed among possi-
ble payoff levels as the evolutionary dynamics proceeds. A
summary is given in Section 5.

2 Site-diluted snowdrift game: model
and key features

We propose and study a site-diluted snowdrift game on
a square lattice. Consider a square lattice consisting of
N = L × L sites, with periodic boundary condition. In
the site diluted case, a site is occupied by a player with a
site-occupancy probability ρ. There are a total of N = ρN
players in the system. Players occupying two neighboring
sites compete within the paradigm of a two-person evolu-
tionary snowdrift game (SG). In SG, a player can take on
one of two possible strategies or actions: to cooperate C or
not-to-cooperate (to defect) D, with an action-updating
scheme based on how well the current action performs.
Within the context of a benefit b to both players when a
task of a total cost c is completed, the payoff matrix of
SG can be described by a single parameter r related to
the cost-to-benefit ratio as [26]

C D
C
D

(
1 1 − r

1 + r 0

)
(1)

with 0 < r < 1, where the matrix elements give the payoffs
to the player taking the action in the left-hand column,
when playing against an opponent using the action in the
top row.

At a moment in time, each player possesses an ac-
tion. In the diluted SG, players have different numbers
of opponents. The competing environment of the players
becomes inhomogeneous. A local action-updating scheme
that aims to achieve a better performance is implemented
asynchronously as follows. We use capital letters to la-
bel players and lower-case letters to label actions. At each
time step, a player I is chosen at random for a possible
update of his action. The player I, who is taking action
i (i ∈ [C, D]), competes with each of his kI neighbors
and gets an average payoff per opponent VI,i based on the
actions of the opponents and according to the payoff ma-
trix. Player I then randomly chooses a neighboring player
J among his kI neighbors as a reference player for an ac-
tion update. Player J , who is taking action j (j ∈ [C, D]),
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Fig. 1. The fraction of cooperative players or the frequency of
cooperation Fc = Nc(ρ)/N as a function of the site-occupancy
probability ρ on a diluted square lattice for different values of
the payoff parameter r as obtained by numerical simulations.

competes with each of his kJ neighbors and gets an av-
erage payoff per opponent VJ,j . Player I then compares
VI,i with VJ,j . If VI,i < VJ,j , then player I will have a
probability wi→j = (VJ,j − VI,i)/Ω to update his action
from i to j of his better performing neighbor. Here, Ω is
chosen to ensure wi→j ≤ 1 and we take Ω = 1 + r. If
VI,i ≥ VJ,j , player I will keep his current action and thus
wi→j = 0. Obviously, an isolated player will be using his
initial action all the time.

To study the key features of the diluted SG, we have
carried out numerical simulations on 100 × 100 lattices.
We assume that a player is assigned an initial action ran-
domly. For each value of the occupancy probability ρ and
an initial configuration, the number of C-action players
in the long-time steady state is obtained. Here, an initial
configuration amounts to specifying a given configuration
of occupied sites and an initial assignment of actions. For a
given initial configuration, the action-updating scheme is
carried out repeatedly in time (about 104 time steps) and
the fraction of C-action players in the long-time limit (at
least for 5×104 time steps) is determined. Results are then
obtained by averaging over 100 different initial configura-
tions. The averaged number of C-action players NC(ρ) for
a given value of ρ can be shown in two ways. The ratio
ρC = NC(ρ)/N gives the fraction of C-action players in
the whole lattice, including the unoccupied sites. With a
total of N = ρN players for a given ρ, it is more mean-
ingful to focus on the reduced frequency of cooperation
defined by the ratio FC ≡ NC(ρ)/N = ρC/ρ that gives
the fraction of C-action players among all the players. It
is also the probability that a randomly chosen player in
the system taking on the C action. Figure 1 shows the
dependence of FC on the occupancy probability ρ for dif-
ferent values of r that span the range 0 < r < 1. The
effects of r can be seen by noticing FC drops with an in-
creasing r for a fixed value of ρ. This is in accordance with
the meaning of the cost-to-benefit ratio r that cooperation

is suppressed when the cost to cooperate increases. For an
evolutionary SG on a full square lattice (ρ = 1), there is
an almost AllC phase, i.e., all players are cooperative, at
small r (e.g. see r = 0.1 results in Fig. 1) and an AllD
phase, i.e., all players are non-cooperative, at large r (e.g.
see r = 0.9 results in Fig. 1) separated by a mixed phase
at intermediate values of r [26]. The way that FC drops
with r, however, depends on the value of ρ. This point is
better illustrated by the dependence of FC on ρ as de-
picted in Figure 1. For a wide range of r, FC shows a
non-monotonic dependence on ρ. When a full lattice is di-
luted, FC drops from its value at ρ = 1 for both r � 0.2
and r > 0.3. However, for 0.2 � r � 0.3, diluting a full
lattice would enhance cooperation and lead to a higher
ρC/ρ. Further dilution (smaller ρ) leads to isolated clus-
ters of players. For ρ ≈ 0, only isolated individual players
exist and FC ≈ 0.5 due to the initial random assignment
of actions. The results in Figure 1 show that FC drops
from 0.5 with ρ for ρ � 1 for all values of r, and eventu-
ally turns around and increases with ρ for r ≤ 0.67. These
results show the intricate interplay between disorder and
the cost-to-benefit ratio in determining the degree of coop-
eration. Although similar features were observed by sim-
ulations in previous studies on disordered PD [9,22] and
SG [9,23], an analytic approach is lacking. Understanding
this non-monotonic dependence of FC on the occupancy
probability ρ is a challenging analytic task and the focus
of the present work.

3 Theoretical analysis

Formulating a theory of FC in a full lattice is itself a non-
trivial task. The pair approximation, for example, could
at best capture the trend of FC as a function of r on a
full lattice [26]. In diluted SG, the unoccupied sites create
further complications and the non-monotonic dependence
of FC on ρ turns out to be an excellent test bed for the va-
lidity of different analytic approaches, as we now discuss.
A diluted SG consists of clusters of players of various sizes.
Formally, the cooperation frequency is a combined result
of the SG dynamics in a cluster of a certain size s and the
distribution in cluster sizes. However, an approach of con-
sidering the dynamics of every possible cluster size will be
too complicated and not too illuminating. Here, we aim at
establishing an approximation that has the merits of be-
ing physically transparent and yet captures the key effects
of site dilution for all values of ρ.

The key idea is to consider the effects of small clusters
and big clusters separately. A line separating small and
big clusters must then be drawn. To balance simplicity
and accuracy, we simply treat the isolated players (s = 1)
and isolated pairs of players (s = 2) as small clusters.
Explicitly, we have

FC =
∑

sizes s

D(s)f (s)
C =

∑
s=1,2

D(s)f (s)
C +

∑
s>2

D(s)f (s)
C

≡ FI
C + FII

C , (2)
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Fig. 2. The probabilities D(1) (squares) and D(2) (circles)
of a randomly chosen occupied site belonging to an isolated
site or an isolated pair of sites as obtained by numerical sim-
ulations. The lines are calculated by D(1) = P (4, 0) and
D(2) = P (4, 1)P (3, 0) with P (K,k) given by equation (3).

where D(s) is the probability that a randomly chosen oc-
cupied site belonging to a cluster of size s and f

(s)
C is the

probability of finding a C-action player in a cluster of s
players. The first summation is over all cluster sizes and
the last equality defines the contributions from small (la-
belled I) and big (labelled II) clusters.

To handle the first term FI
C , we introduce P (K, k)

defined by

P (K, k) ≡
(

K

k

)
ρk(1 − ρ)K−k, (3)

with K = 4 being the coordination number of a square lat-
tice and

(
K
k

)
the binomial coefficient. Physically, P (K, k)

is the probability that an occupied site has exactly k oc-
cupied sites among the K neighboring sites. In terms of
P (K, k), the probability of a randomly chosen player be-
ing an isolated player is D(1) = P (K, 0). Similarly, the
probability of a randomly chosen player belonging to an
isolated pair of players is D(2) = P (K, 1)P (K − 1, 0). A
consistency check on the expressions of D(1) and D(2) is
shown in Figure 2, in which both the analytic and simu-
lation results are shown.

For the isolated players, half of them will take action C
all the time as they will keep their initially assigned ac-
tion and thus f

(1)
C = 1/2. For an isolated pair of play-

ers, the scenario is that of a cluster of two players in an
evolutionary SG. Only when the initially assigned actions
correspond to both players with action C, i.e., a C-C
pair, the resulting actions will be C-C. All other initial
assignments, i.e., C-D, D-C, and D-D, will evolve to a
D-D pair as a result of the action updating mechanism.

Thus, f
(2)
C = 1/4. Putting the results together, we have

FI
C =

1
2

P (K, 0) +
1
4

P (K, 1)P (K − 1, 0). (4)

Note that the dependence on ρ is embedded in P (K, k). A
few remarks follow, before we proceed to treat FII

C . The
choice of treating clusters of sizes s = 1 and s = 2 sep-
arately is necessary because they dominate the behavior
of FC for ρ � 1. However, their contributions drop as
ρ increases. Carrying out a similar treatment for clusters
of large sizes is complicated and turns out to be unnec-
essary. It is sufficient to treat the contributions of larger
clusters in a continuum approximation, as we will show
later.

3.1 Pair approximation for F II
C and its inadequacy

For players who are not isolated or not belonging to an
isolated pair of players, we assume them to be in one
big connected cluster and their contribution to FC is
FII

C . Single-site approaches [46,47] will be too rough as
the evolutionary SG involves pair-wise competitions. We
therefore start our discussion with the pair approxima-
tion that focuses on the number of different types of links,
namely C-C, C-D, D-C, and D-D, between neighboring
players and examine its validity for treating FII

C . Sum-
ming up links of all types gives the total number of links
L. The variables are taken to be the link densities fi,j ,
given by the number of (i, j) links divided by L with
(i, j) taking on (C, C), (C, D), (D, C), and (D, D). The
sum rule fC,C + fC,D + fD,C + fD,D = 1 and the relation
fC,D = fD,C reduce the number of variables to two link
densities. The frequency of cooperation in the cluster is
then given by fC = fC,C + fC,D and FII

C follows. Here,
FC within the pair approximation for FII

C is given by

FC = FI
C + FII

C

= FI
C + [1 − P (K, 0) − P (K, 1)P (K − 1, 0)]fC , (5)

with FI
C given by equation (4). The value of fC is calcu-

lated by equation (A.2) (see Appendix).
Figure 3 shows the theoretical results obtained by

equation (5) together with the simulation results for four
different values of r. The theory does not give results in
agreement with simulation data. At best, it gives some
qualitative features. For example, the pair approximation
gives the increasing trend of FC with ρ for r � 1, as
well as the non-monotonic behavior of FC with ρ for a
wide range of larger r. Based on how the pair approxi-
mation [26,28,48–50] works in SG in regular lattices, we
conclude that the pair approximation is inadequate in
handling the disordered competing environments in the
site-diluted SG. The failure also informs us that a better
theory ought to include spatial information of the local
competing environments more carefully.
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Fig. 3. The frequency of cooperation FC as a function of site-
occupancy probability ρ for r = 0.1, 0.25, 0.45, and 0.9. The
lines are calculated by the FC = FI

C +FII
C with FII

C evaluated
by the pair approximation. The symbols are results of numer-
ical simulations. The pair approximation is inadequate for the
full lattice and diluted lattices.

3.2 Local-configuration approximation for F II
C

We develop a local-configuration approximation (LCA)
that focuses on how different local competing configura-
tions change as the evolutionary dynamics proceeds. For
a square lattice, the fundamental configuration of a player
consists of a group of five sites – an occupied site together
with its four surrounding sites that could be occupied or
unoccupied. Figure 4 shows two examples of local configu-
rations, with an occupied site in the middle with four occu-
pied neighboring sites (Fig. 4a) and three occupied neigh-
boring sites (Fig. 4b). Explicitly, let the occupied site at
the center take on the action i (i = C or D). The site and
its immediate surrounding can be denoted by i(j, l, m, n),
where j, l, m, n could be C, D, or an empty site depend-
ing on the local configuration under consideration. The
variables within LCA are then the frequencies of local
configurations denoted by fi(j, l, m, n). The variables in
local-configuration approximation, therefore, extends the
spatial consideration from that of two neighboring sites in
the pair approximation to that of a group of five sites.

To bring out the essence of LCA, we will focus on the
case in Figure 4a and explain how dynamical equations
can be established for such local configurations in detail.
The fundamental configuration in Figure 4a consists of an
occupied site I in the middle with the four occupied neigh-
boring sites connected to the site I by the solid lines. For
this class of configurations, the central site and its immedi-
ate surrounding is labelled by i(j, l, m, n), where j, l, m, n
could be C or D. As the evolutionary dynamics requires
the comparison with the payoff of a neighboring player, the
spatial extent for establishing the dynamical equations for

Fig. 4. Illustration of two local configurations with the central
occupied site taking an action i (i = C or D). (a) A local config-
uration consisting of the central site and four occupied nearest
neighboring sites labelled by their actions j, l, m, n. The pay-
offs to these nearest neighboring sites are, in turn, determined
by the sites that are two steps away from the central site as
indicated by this cluster of sites around the central site. (b) A
local configuration consisting of the central site and three oc-
cupied nearest neighboring sites. The payoffs to these sites are,
in turn, determined by this cluster of sites around the central
site.

fi(j, l, m, n) is actually farther than the nearest neighbors.
To illustrate the point, if the neighboring player J using
action j is chosen as a reference for an action update, his
payoff is determined by the local configuration described
by j(b, c, i, a) as shown in Figure 4a, with the sites labelled
by b, c and a being two steps (next-nearest) away from the
central site and they can be an occupied site in the state
of C or D, or unoccupied. Figure 4a shows the spatial ex-
tent that needs to be considered when the central site is
chosen for an action update.

Dynamical equations for fi(j, l, m, n) can be set up fol-
lowing a similar consideration as in the pair approxima-
tion, despite being more complicated. First note that the
probability of choosing a local configuration i(j, l, m, n)
for a possible action update is the frequency fi(j, l, m, n)
itself. The neighboring sites of I are then considered in
turn, say, starting from the site J on the right in an anti-
clockwise way. Referring to Figure 4a, if the neighboring
occupied site J is of action j, then we take the probability
that j(b, c, i, a) is its local configuration to be

pj(b, c, i, a) =
fj(b, c, i, a)∑

b′,c′,a′
fj(b′, c′, i, a′)

, (6)

where the summations in the denominator are over the
possible states C, D, and empty for a′, b′, c′, i.e., over
only three out of the four neighbors of j because the neigh-
bor on the left (the central site) is under the condition of a
given action i. The form of equation (6) amounts to assum-
ing that every local configuration of the form j(b′, c′, i, a′)
of an occupied site next to i appears with equal prob-
ability. Moving on to the site located above the central
site i, if it is of action l, then we take the probability that
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l(c, d, e, i) is its local configuration to be

pl(c, d, e, i) =
fl(c, d, e, i)∑

c′,d′,e′
fl(c′, d′, e′, i)

. (7)

Similarly, for the site on the left of (below) the central site,
if it is of action m (action n), then we take the probabil-
ity that m(i, e, f, g) (n(a, i, g, h)) is its local configuration
to be

pm(i, e, f, g) =
fm(i, e, f, g)∑

e′,f ′,g′
fm(i, e′, f ′, g′)

, (8)

and

pn(a, i, g, h) =
fn(a, i, g, h)∑

a′,g′,h′
fn(a′, i, g′, h′)

. (9)

These quantities are useful in establishing the dynamical
equations for the variables fi(j, l, m, n).

The probability of having an event that the central
player of action i in a local configuration i(j, l, m, n)
adopts the action j of a neighboring player of local con-
figuration j(b, c, i, a) is given by the product of the prob-
abilities that the referencing player is chosen among the
neighbors and that the action update really takes place.
The former is formally given by 1/ki(j, l, m, n), where
ki(j, l, m, n) is the degree or the number of neighboring
occupied sites. For the case in Figure 4a, the probability
is 1/4. The latter is given by

wi→j(j, l, m, n) =
VJ,j(b, c, i, a) − VI,i(j, l, m, n)

1 + r
(10)

when the reference player is performing better, i.e.,
VJ,j(b, c, i, a) > VI,i(j, l, m, n). Otherwise, no action up-
date will take place. When the action update is carried
out, the number of the local configuration i(j, l, m, n)
drops by one and that of the local configuration
j(j, l, m, n) increases by one.

An important point in formulating the dynamical
equations for the variables fi(j, l, m, n) is to incorporate
the spatial correlation as manifested by the sharing of a
common neighboring site (e.g. the one labelled c in Fig. 4a)
by two nearest-neighboring sites (e.g. sites labelled j and l
in Fig. 4a) of a local configuration. Starting from the site
on the right of a local configuration, the possible local
configurations j(b, c, i, a) amount to allowing for all pos-
sible states of b′, c′ and a′ of the three neighboring sites
out of four. For each of the local configurations j(b, c, i, a),
however, the local configurations l(c, d′, e′, i) of the other
nearest neighbor l correspond only to all possible states
of d′ and e′, i.e., two sites out of four. Similarly, for given
l(c, d, e, i), the local configurations for the site on the left
m(i, e, f ′, g′) correspond only to all states of f ′ and g′.
Finally, for given j(b, c, i, a) and m(i, e, f, g), the local
configurations for the site below n(a, i, g, h′) correspond
only to the possible states of h′. Finally, a set of dynam-
ical equations for the frequencies of local configurations
i′(j′, l′, m′, n′) in the cases of Figure 4a can be formulated

by incorporating all the factors discussed. The equations
are given by

dfi′(j′, l′, m′, n′)
dt

=
1
N

∑
i

∑
j,l,m,n

fi(j, l, m, n)

×
∑
b,c,a

pj(b, c, i, a)
∑
d,e

pl(c, d, e, i)

×
∑
f,g

pm(i, e, f, g)
∑

h

pn(a, i, g, h)

×
∑

z=j,l,m,n

wi→z(j, l, m, n)
ki(j, l, m, n)

× [(δz,i′ − δi,i′) δj,j′δl,l′δm,m′δn,n′

+ (δz,m′ − δi,m′) δj,i′δb,j′δc,l′δa,n′

+ (δz,n′ − δi,n′) δl,i′δc,j′δd,l′δe,m′

+ (δz,j′ − δi,j′ ) δm,i′δe,l′δf,m′δg,n′

+ (δz,l′ − δi,l′) δn,i′δa,l′δg,m′δh,n′ ] ,
(11)

where the first and second summations are over the states
of C and D for the indices i, j, l, m, n, and the other
summations on the next-nearest neighbors of the central
site are over the states of C, D, and empty sites. The delta
functions in the parentheses account for the changes in
the number of local configurations when an action update
takes place.

Analysis on the change in the number of other local
configurations can be carried out in a similar fashion. For
the type of configurations as shown in Figure 4b, for ex-
ample, we could again consider the neighboring sites of the
central site one by one. When an empty neighboring site
is encountered, we skip the site and move on to the next
site. An empty site in the configuration affects the extent
to which two neighboring sites of the central site share a
common neighbor. Accounting for this effect leads to a set
of dynamical equations for the local configurations shown
in Figure 4b. Dynamical equations for other types of local
configurations can also be formulated accordingly. Recall
that the effects of isolated sites and isolated pair of sites
are considered separately by FI .

A set of coupled dynamical equations for different lo-
cal configurations fi(j, l, m, n) can be constructed within
LCA. The equations are analogous to those (Eq. (A.2)
in Appendix A) within the pair approximation, only that
LCA includes a larger spatial correlation and thus con-
sists of more variables. The equations can be iterated to
the steady state to solve for fi(j, l, m, n). The frequency
of cooperation in the cluster fC , apart from the contribu-
tions of isolated sites and isolated pairs, is given by

fC =
∑

j,l,m,n

fC(j, l, m, n), (12)

where the summation is over all possible local configura-
tions within LCA with the central site taking the action C.
Finally, FC is again given by equation (5), with fC calcu-
lated within LCA.

http://www.epj.org


Eur. Phys. J. B (2016) 89: 152 Page 7 of 11

Fig. 5. (a) The frequency of cooperation FC as a function
of the site-occupancy probability ρ as calculated by the local-
configuration approximation (lines) and as obtained by numer-
ical simulations (symbols) for different values of r. (b) For
a given r, FC is highest at a certain occupancy probability
ρmax(r). The dots (open circles) are obtained by numerical
simulations (LCA).

4 Results of LCA and a physical picture

Results of FC as obtained by LCA are shown in Fig-
ure 5a for r = 0.1, 0.25, 0.45, and 0.9, together with
simulation results. The results capture the non-monotonic
feature and they are in good agreement with simulation
results. Comparing with results in Figure 3, the better
performance of LCA over the pair approximation is evi-
dent. In particular, LCA gives the correct full-lattice (at
ρ = 1) behavior, for which the pair approximation gives
incorrect values of fC with a large deviation at small r.
For r = 0.25, LCA also correctly predicts an enhanced

cooperation when the lattice is slightly diluted and fC at-
tains a maximum at some optimal dilution. This feature
is also missing within the pair approximation. At higher r
(e.g. r = 0.45), maximum fC is attained in a full lattice.
Dilution from a full lattice leads to a drop in fC until a
minimum is reached. For large r (e.g. r = 0.9), coopera-
tion is maximally suppressed in a full lattice and dilution
serves to make cooperation possible by sustaining cooper-
ation in small clusters such as isolated players and isolated
pairs of players.

For each value of r, a highest frequency of coopera-
tion occurs at some occupancy probability ρmax that cor-
responds to where FC exhibits a maximum. Results of
ρmax(r) as obtained by simulations (open circles) and by
LCA (dots) are shown in Figure 5b. LCA captures the
behavior of ρmax very well.

Most noticeable in Figure 5 is the enhanced FC in the
range 0.2 < r < 0.32 when empty sites are introduced
into an otherwise full lattice. In what follows, we give a
qualitative and physically transparent explanation of this
feature. Within this range of r, a maximum FC is attained
at some optimal occupation with values ρ > 0.6, signify-
ing that a spanning cluster exists in the system accord-
ing to the percolation theory. Most of the occupied sites
belong to this spanning cluster. The sites in the cluster
could have different numbers of nearest neighbors given
by k = 1, 2, 3, or 4, unlike a full lattice where every site
has the same number of nearest neighbors. For a player
with k neighbors, there could be nC = 0, . . . , k neighbors
using the C action. The payoff per opponent is then given
by VC(k, nC) = [nC + (k − nC)(1 − r)]/k for a player
taking the C action, and VD(k, nC) = nC(1 + r)/k for
a player taking the D action. For clarity, we introduced
the symbol VC(k, nC) (VD(k, nC)) to represent the pay-
off per opponent to a player of action C (action D) with
exactly nc neighbors of action C among his k neighbors.
To illustrate the physical picture, we consider r = 0.25
within the range 0.2 < r < 0.32 and show all the pos-
sible values of the payoffs per opponent VC(k, nC) and
VD(k, nC) in Figure 6. There are k + 1 values of payoffs
for a given k, with the highest payoff corresponding to
nC = k and drops as nC decreases. These discrete payoff
levels for C-action (D-action) players are reminiscent of
the energy levels in an energy band and thus we refer to
the collection of payoff levels as the C-band (D-band) [51].
According to the action switching mechanism, players in
the levels VC(k, k) and VD(k, 0) will not change their ac-
tion, as all their neighbors are taking the same action.
A D-action player surrounded only by C-action neighbors
has the highest payoff per opponent of VD(k, k) = 1+r and
therefore the player will not take part in the action switch-
ing mechanism. The payoff levels of these three cases are
marked as thinner lines in Figure 6.

Let us consider a full lattice of players, i.e., ρ = 1. In
this case, only the k = 4 levels in the C-band and D-band
are relevant. An initial condition of assigning an action
randomly to every player amounts to distributing half of
the players to the five levels in the C-band according to the
binomial distribution, and the other half to the five levels
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Fig. 6. Payoff levels VC(k, nC) and VD(k, nC) for k = 1, 2,
3, 4 and for nC = 0, . . . , k for a given k. The levels are evalu-
ated for the case r = 0.25. The levels VC(k, nC) and VD(k, nC)
collectively form the C-band and D-band, respectively. The
levels illustrated by the thinner lines are those in which the
central site in the configuration will not be affected by the ac-
tion updating mechanism. Evolutionary dynamics amounts to
a continual redistribution of players among these payoff levels.

in the D-band in a similar fashion. This initial distribution
evolves in time in a restricted manner. Consider an action
switching process of a C-action player, say, in the payoff
level VC(4, nC). The player will refer to one of his 4 − nC

neighboring D-action players. If there is a switching, the
referencing D-action player must be one in a payoff level
VD(4, nC) that is higher than VC(4, nC). The difference in
payoffs drives an action switching that amounts to mov-
ing a player from VC(4, nC) in the C-band to VD(4, nC) in
the D-band. Accompanying this change is a change in the
local configuration of the four neighbors. These changes
amount to moving players within the same band. In sum-
mary, the evolutionary dynamics can be interpreted as
players making transitions between payoff levels crossing
different bands and within the same band. The contin-
ual re-distribution of players among the payoff levels ap-
proaches a stationary distribution, analogous to that of a
reaction approaching an equilibrium following the law of
mass action. For a full lattice at r = 0.25, cooperation
is generally promoted because VD(4, 1) and VD(4, 2) are
both lower than all VC payoffs. However, there exists a
payoff level of VD(4, 3) = VC(4, 3) that keeps a number of
D-action players in the system. For smaller r, e.g. r = 0.1,
VC(4, 3) > VD(4, 3), and this is a reason why FC is higher
at r = 0.1 than r = 0.25.

The effect of site dilution can also be clearly seen from
the physical picture. Slightly diluting a lattice leads to a
spanning cluster of occupied sites with different numbers
of neighbors. The sites in a cluster could now have k = 1,
2, 3 or 4. The effect is that all the payoff levels in Figure 6
can now be accessed by the players. As the unoccupied

sites are static, the number of neighbors for every player
is fixed initially. This has the effect of restricting a player
to stay in the payoff levels with the same k when making
transitions across the bands and within the same band.
As shown in Figure 6 for r = 0.25, site dilution intro-
duces a number of payoff levels in the C-band and D-band,
with those in the C-band generally higher in payoffs. In
fact, only the levels VD(3, 2) and VD(4, 3) lie within the
many levels in the C-band, as indicated by the dashed
lines. To illustrate that such payoff level alignment pro-
motes cooperation, consider a D-action player in VD(3, 2)
with two C-action neighbors. If one of these neighbors be-
longs to a level of higher payoffs, i.e., VC(2, 1), VC(3, 2)
or VC(4, 3), and this C-action neighbor is chosen to trig-
ger an action update, then the D-action player will switch
across the band to the level VC(3, 2) with an accompany-
ing change in the neighborhood of the reference player to
place him into VC(2, 2), VC(3, 3) or VC(4, 4). These levels
are of the highest payoffs in the C-band and the central
site of such configurations will not be affected by the ac-
tion switching mechanism. The net effect is, therefore, to
promote cooperation by opening up channels for D-action
players to switch to C-action and to protect the C-action
players from switching back. When dilution is too high,
however, isolated players and isolated pairs of players
start to emerge and the effect of the term FI

C has to be
included.

The qualitative picture described above can be verified
numerically. From simulations, we can extract the num-
bers NC(k, nC) for C-action players and ND(k, nC) for
D-action players with exactly nC neighbors of C-action
among his k neighbors after the transient. Figure 7 shows
the ratios FII

C (4, nC) = NC(4, nC)/N and FII
D (4, nC) =

ND(4, nC)/N as a function of nC for the case of a full
lattice (dots). The uniform k = 4 lattice and the ini-
tial condition lead to a peak at nC = 2 for FII

C (4, nC)
and a peak at nC = 3 for FII

D (4, nC). For a full lattice,
FII

C =
∑

nC
FII

C (4, nC) and its value is restricted by the
drop in FII

C (4, 4). The corresponding results for a site oc-
cupancy of ρ = 0.7 are shown in Figure 8. Now, k can take
on values other than 4. Note that for each k, FII

C (k, k) is
the highest, resulting in the enhanced FII

C relative to a
full lattice. This is in accordance with the qualitative pic-
ture on promoting cooperation by introducing vacancies,
as discussed based on the payoff levels above. The validity
of the local-configuration approximation is further estab-
lished by comparing the results of FII

C (k, nC) with that
evaluated by LCA after iterating the LCA equations to
the steady state. Results for a full lattice and for ρ = 0.7
are in good agreement with simulation results, as shown
in Figures 7 and 8 (see open circles). The success of LCA,
therefore, stems from the accurate descriptions of the dis-
tribution in the local competing environment among the
players.

5 Conclusions

The effects of site dilution on cooperation in an evolu-
tionary snowdrift game on a lattice have been studied
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Fig. 7. The quantities (a) FII
C (4, nC) among sites of C-action

and (b) FII
D (4, nC) among sites of D-action in a fully occupied

square lattice, for nC = 0, . . . , 4 at the cost-to-benefit ratio of
r = 0.25 as obtained by numerical simulations (dots) and by
the local-configuration approximation (open circles).

Fig. 8. The quantities (a) FII
C (k, nC) among sites of C-action

and (b) FII
D (k, nC) among sites of D-action in a diluted square

lattice of occupancy probability ρ = 0.7, for k = 2, 3, 4 and
nC = 0, . . . , k for each value of k at the cost-to-benefit ratio of
r = 0.25 as obtained by numerical simulations (dots) and by
the local-configuration approximation (open circles).

by numerical simulations and analytic treatments. The
frequency of cooperation FC generally shows a non-
monotonic dependence on the fraction of occupied sites ρ,
for different values of the payoff parameter r. Slightly di-
luting a full lattice would lead to lower cooperation for
small values of r and high values of r. For a range of r,
it was found dilution would lead to an enhanced coop-
eration. Formulating analytic approaches to evolutionary
games in regular and diluted lattices is a challenging task.
The importance of small clusters of players for ρ � 1 mo-
tivated us to single out their contributions to FC from the
bigger clusters. The contributions FI

C from isolated play-
ers and isolated pairs of players were treated exactly. The
contribution FII

C from the other players was first treated
by the pair approximation. The results from the pair ap-
proximation do not agree with simulation results. The in-
adequacy of the pair approximation informs us that longer
spatial correlation should be included. A local configura-
tion approximation (LCA) was then formulated for FII

C .
LCA treats the local competing configurations as the vari-
ables and amounts to considering a spatial extent up to
the neighborhood of a player’s neighbors. Results from
LCA are in much better agreement with simulation re-
sults. The validity of LCA was further verified by com-
paring the number of different configurations extracted
from simulations and obtained by LCA.

The formalism also allows for a clear physical inter-
pretation. With a finite number of competing neighbors
and thus a finite number of local configurations, the dis-
crete payoff values for a certain action (C or D) form a
set of payoff levels. Classifying these payoff levels by the
number of competing neighbors k and the action (C or
D) gives the notion of C-band and D-band. An initial
condition amounts to distributing players into these pay-
off levels. When a player adapts or switches action, both
his own neighborhood and the neighborhood of his com-
peting neighbors are changed. The action-updated player
makes a transition across the C-band and D-band and his
neighbors make transitions within a band. The dynamics
corresponds to continual re-distribution of players among
the payoff levels in the bands, with the steady state prop-
erties given by the equilibrium distribution. The picture
is described by the equations in LCA. The success of LCA
also validates the physical picture.

We end with a few remarks. The idea behind the lo-
cal configuration approximation is general and LCA can
be applied to a wide range of problems. LCA can be ap-
plied to treat competing games with two actions (C or
D), epidemic models with two states (susceptible or in-
fected), and voter models with two opinions (yes or no).
LCA can also be refined and applied to regular lattices
as a special case [52] in problems that a reliable ana-
lytic approach is lacking, e.g. snowdrift game on lattices.
LCA can be further extended to cases in which the play-
ers could take on three or more actions such as compet-
ing games incorporating a cooperative but punishing ac-
tion [53] and the susceptible-infected-recovered epidemic
model. Finally, the physical picture that we introduced
could become a guide for formulating better theories of
dynamical processes in networked entities.
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Appendix: Pair approximation

The pair approximation amounts to studying the dynam-
ical equations of fi,j and retaining spatial correlation only
up to that of neighboring links by decoupling longer spa-
tial correlations [26,48–50]. The dynamics is related to two
factors - how likely a target player of current action i takes
on a referencing neighbor of action j for an action update
and how the link densities fi,j would be altered when such
an update takes place.

To illustrate the point, first note that the probability
of choosing a player I of action i who refers to a neigh-
bor J of action j for a possible action update is fi,j it-
self. Player I has a probability P (K − 1, kα) of having
kα other neighbors in addition to the neighbor J . Among
these kα other neighbors, the probability of having nC of
them taking the C-action and thus kα − nC taking the
D-action is

(
kα

nC

)
(fi,C/fi)nC (fi,D/fi)kα−nC . Similarly for

player J , he has a probability P (K − 1, kβ) of having
kβ other neighbors in addition to the neighbor I. Among
these kβ neighbors, the probability of having mC of them
taking the C-action and thus kβ−mC taking the D-action
is

(
kβ

mC

)
(fj,C/fj)mC (fj,D/fj)kβ−mC . Recall that the prob-

ability that player I gives up his current action and adopts
player J ’s action j is wi→j = (VI,i − VJ,j)/Ω. Putting all
the factors together, the probability of the event that the
player I updates his strategy to that of his neighboring
player J is given by the expression

P (K − 1, kα)
(

kα

nC

) (
fi,C

fi

)nC
(

fi,D

fi

)kα−nC

×P (K−1, kβ)
(

kβ

mC

) (
fj,C

fj

)mC
(

fj,D

fj

)kβ−mC

fi,jwi→j .

(A.1)

Accompanying such an event of action update are changes
in the link densities. Some link densities are reduced. The
link densities of the types (i-j) and (j-i) decrease by 1/L.
In addition, the link densities of the types (i-C) and (C-i)
decrease by nC/L, and that of the types (i-D) and (D-i)
decrease by (kα−nC)/L. Some link densities, however, are
enhanced. The link densities of the type (j-j) increases by
2/L. In addition, the link densities of the types (j-C) and
(C-j) increase by nC/L, and that of the types (j-D) and
(D-j) increase by (kα − nC)/L.

The master equations of the variables fi′,j′ can then be
established by including all possible events, i.e. all values
of kα, kβ , nC , mC , and all possible switching from i to j.

Explicitly, we have

dfi′,j′

dt
=

1
L

∑
i=C,D

K−1∑
kα=0

P (K − 1, kα)

×
kα∑
nC

(
fi,C

fi

)nC
(

fi,D

fi

)kα−nC

×
∑

j=C,D

K−1∑
kβ=0

P (K − 1, kβ)

×
kβ∑
mC

(
fj,C

fj

)mC
(

fj,D

fj

)kβ−mC

fi,j wi→j

× [− (δi,i′δj,j′ + δj,i′δi,j′)
−nC (δi,i′δC,j′ + δC,i′δi,j′)
−(kα − nC) (δi,i′δD,j′ + δD,i′δi,j′ ) + 2δj,i′δj,j′

+nC (δj,i′δC,j′ + δC,i′δj,j′)
+ (kα − nC) (δj,i′δD,j′ + δD,i′δj,j′)] , (A.2)

where the terms with the Kronecker delta function δi,j give
the change in the link density fi′,j′ when an action update
occurs, and the term corresponding to kα = 0 and kβ = 0
is excluded from the summations over kα and kβ . Solving
the coupled equations (Eq. (A.2)) for two link densities
will be sufficient. The equations can be iterated in time to
convergence for obtaining the steady state behavior. Note
that the occupancy probability ρ is carried in the factors
P (K − 1, k) and the cost-to-benefit ratio r is carried in
the action updating probability wi→j .
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