https://doi.org/10.1140/epjti/s40485-021-00069-4
Research Article
Characterization of the angular response of a multi-directional spectroradiometer for measuring spectral radiance
Institute of Meteorology and Climatology, Leibniz University Hannover, D-30419, Hannover, Germany
a
tobar-foster@muk.uni-hannover.de
Received:
22
December
2020
Accepted:
24
June
2021
Published online:
28
July
2021
Despite its importance, few instruments are able to measure the angular distribution of the solar spectrum with a high spectral and temporal resolution. We present a novel characterization method of the multi-directional entrance optics of the AMUDIS (Advanced MUltiDIrectional Spectroradiometer) which is a multidirectional spectroradiometer based on three CCD image sensors combined with imaging spectrographs. The new type of entrance optics consists of 435 different optical fibres uniformly distributed along 145 directions covering the upper hemisphere and allowing simultaneous measurements of the radiance in the ultraviolet, visible and near infrared part of the spectrum, ranging from 280 nm to 1700 nm. The experimental setup for characterizing the multidirectional entrance optics is based on a 100 W halogen lamp and a robotic arm, which moves the lamp tangentially over the surface of a virtual sphere of 102.5 cm radius around the entrance optics. The characterization revealed misalignments in the position of the optical fibres of up to 3∘ (which can affect radiance measurements, specially under broken clouds conditions). The novel characterization method improved 3-fold the alignment up to ±0.1∘
Key words: Solar radiation / Spectroradiometry / Spectral radiance
Copyright comment , corrected publication 2022
© The Author(s) 2021. , corrected publication 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.