https://doi.org/10.1140/epjti/s40485-021-00072-9
Research Article
Controlling the process of muon formation for muon-catalyzed fusion: method of non-destructive average muon sign detection
Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Göteborg, Sweden
Received:
15
April
2021
Accepted:
18
August
2021
Published online:
4
October
2021
The recent development of intense muon sources (Holmlid, Swedish Patent SE 539,684 C 2 (2017)) is crucial for the use of muon-catalyzed fusion reactors (L. Holmlid, Fusion Science and Technology 75, 208 (2019)) which are likely to be the first generation of practical fusion reactors. For this purpose, only negative muons are useful. For existing sources where negative muons can be ejected (if not formed) preferentially, it is necessary to know the amount of negative muons to determine and optimize the fusion reactor efficiency on-line. Here, a method is developed to measure the absolute muon flux and its average sign without collecting or deflecting the muons. The muons from the patented muon generator have an energy of 100 MeV and above and an intensity of 1013 muons per laser pulse. Here, the detection of the relativistic laser-induced muons from H(0) is reported with a standard particle beam method, using a wire coil on a ferrite toroid as detector for the relativistic particles. The coil detection method shows that these relativistic particles are charged, thus not photons, neutrinos or neutral kaons. This makes the coil method superior to scintillator methods and it is the only possible method due to the large muon intensity. If an equal number of positive and negative mouns passed the coil, no signal would be observed. The signal at the coil in the case shown here is due to relativistic positive muons as concluded from a signal charge sign verification in the coil.
PACS: 67.63.Gh – / 29.25.-t – / 29.40.-n – / 84.32.Hh –
Key words: Ultra-dense hydrogen / Ferrite toroid / Current coil
Copyright comment licensee Springer on behalf of EPJ
© The Author(s) 2021. licensee Springer on behalf of EPJ
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.