https://doi.org/10.1140/epjti/s40485-022-00087-w
Research Article
The FCC-ee vacuum system, from conceptual to prototyping
Vacuum Surfaces and Coatings Group, Technology Department, CERN, Geneva, Switzerland
Received:
29
August
2022
Accepted:
2
November
2022
Published online:
18
November
2022
The FCC-ee is a very challenging accelerator project from the point of view of vacuum. Apart from the sheer size of the machine, a twin-ring of 100 km circumference, the vacuum system design must be capable of dealing with the low-energy 45.6 GeV, high-current version of the machine (the Z-pole) as well as the higher energy, lower current versions. The main difficulty is related to the very much different synchrotron radiation (SR) spectra of the Z-pole vs the other energies, in particular the ttbar at 182.5 GeV. The critical energy of the SR spectrum of the Z-pole is 19.5 keV, while the ttbar exceeds 1.2 MeV. It is particularly challenging in terms of shielding the beryllium chamber in the detectors, for the Machine Detector Interface (MDI) area. We discuss the evolution of the vacuum system design for the arc sections, and some new ideas on NEG-coating, SR absorbers, and pumping system, with the aim to build prototypes soon, in the framework of the FCC Innovation Study program. The design of the vacuum hardware depends on the choices made for the magnets, and the required shielding from high-energy radiation generated by the circulating beam interacting with the residual gas and the interaction of the intense SR fans with the photon. There is also an important collaboration with the engineering integration of the vacuum system in the tunnel, particularly considering the full-energy booster injector, which is not detailed here. We also briefly describe the raytracing montecarlo modelling efforts carried out in the MDI area, and its pumping configuration.
Key words: Vacuum / Pumping system / Montecarlo simulations / Synchrotron radiation / e− e+ colliders / Higgs factories
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.