https://doi.org/10.1140/epjti/s40485-023-00106-4
Research Article
A retarding field thermal probe for combined plasma diagnostics
Institute for Experimental and Applied Physics, Kiel University, Leibnizstraße 19, 24098, Kiel, Germany
a
schlichting@physik.uni-kiel.de
Received:
3
May
2023
Accepted:
3
November
2023
Published online:
15
November
2023
The wide variety and ever-growing applications of plasma processes in research and industry require an equally growing diversity and accessibility of suitable plasma diagnostics. The plasma parameters and the tailoring thereof strongly influence the outcome of thin film deposition, plasma etching, or surface treatments, to name only a few. To further enhance the determination of different fluxes of species, their energies, and behaviour influencing a surface process, a custom-built combination of two commonly used diagnostics was developed. With a retarding field energy analyzer, one can obtain the ion energy distribution in a plasma by measuring the current at the collector depending on the applied voltage at the scan grid. A passive thermal probe determines the energy flux density coming from a process plasma by measuring the temperature change of a dummy substrate. In this study, we present a retarding field energy analyzer where a passive thermal probe substitutes the collector. By doing so, we can determine the energy distribution of the charged ions, their energy flux density at a certain potential, and the power deposited onto a substrate. Another advantage is that the thermal probe can even measure the power deposited by incoming (fast) neutrals and of the background gas when the grids keep away the ions. Hence, combining these two powerful diagnostics yields information neither can deliver on their own. The probe has been tested in three different plasma environments: ion beam source, magnetron sputtering and radio frequency discharge plasma.
Key words: Plasma diagnostic / Diagnostic combination / Ion energy distribution / Energy flux density / Energy balance
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.