https://doi.org/10.1140/epjti/s40485-023-00107-3
Research Article
Dynamic Fabry-Pérot cavity stabilization technique for atom-cavity experiments
Light and Matter Physics, Raman Research Institute, Sadashivanagar, 560080, Bangalore, Karnataka, India
Received:
23
November
2023
Accepted:
23
December
2023
Published online:
30
January
2024
We present a stabilization technique developed to lock and dynamically tune the resonant frequency of a moderate finesse Fabry-Pérot (FP) cavity used in precision atom-cavity quantum electrodynamics (QED) experiments. Most experimental setups with active stabilization either operate at one fixed resonant frequency or use transfer cavities to achieve the ability to tune the resonant frequency of the cavity. In this work, we present a simple and cost-effective solution to actively stabilize an optical cavity while achieving a dynamic tuning range of over 100 MHz with a precision under 1 MHz. Our unique scheme uses a reference laser locked to an electro-optic modulator (EOM) shifted saturation absorption spectroscopy (SAS) signal. The cavity is locked to the PDH error signal obtained from the dip in the reflected intensity of this reference laser. Our setup provides the feature to efficiently tune the resonant frequency of the cavity by only changing the EOM drive without unlocking and re-locking either the reference laser or the cavity. We present measurements of precision control of the resonant cavity frequency and vacuum Rabi splitting (VRS) to quantify the stability achieved and hence show that this technique is suitable for a variety of cavity QED experiments.
Key words: Fabry-Pérot cavity / Cavity stabilization / Cavity QED
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.