EPJ B Colloquium - Record dynamics of evolving metastable systems: theory and applications

Microscopically very different physical, biological and cultural systems all evolve through a sequence of stages, each characterized by stationary fluctuations around constant values of relevant macroscopic observables. Sudden and rapid changes, called quakes, induce transitions from one stage to the next and reveal the non-equilibrium nature of the dynamics. The duration of the stages increases over time, producing a multi-scaled dynamical behavior known in physics under the name of ``physical aging'', and rooted in all cases in a hierarchically structured underlying configuration space. Record Dynamics (RD) is a coarse-graining approach treating the staged evolution of complex metastable systems with the same statistical tools. This colloquium paper reviews RD methods and ideas that have gradually evolved over time and shows how RD can be applied to selected cases of biological and physical origin. The main property described is that quakes are a log-Poisson process and that the coarse-grained dynamics is therefore log-time homogeneous. The bibliography points the interested reader to the original RD papers and their background.

Record Dynamics (RD) is a coarse-graining approach treating the staged evolution of complex metastable systems with the same statistical tools. This colloquium paper reviews RD methods and ideas that have gradually evolved over time and shows how RD can be applied to selected cases of biological and physical origin. The main property described is that quakes are a log-Poisson process and that the coarse-grained dynamics is therefore log-time homogeneous. The bibliography points the interested reader to the original RD papers and their background.

In a new Colloquium published in EPJB, an international author team review RD methods and ideas that have gradually evolved over time and show how RD can be applied to selected cases of biological and physical origin.

ISSN: 2195-7045 (Electronic Edition)

© Springer-Verlag